Cancer Crosslinks 2020 gathered a distinguished group of national and international speakers, and received a record number of meeting delegates.

Cancer Crosslinks 2020

The speakers, chairpersons, introducers and organizers of Cancer Crosslinks 2020Oslo Cancer Cluster

Engaging presentations by leading international and Norwegian oncology experts at the 12th Cancer Crosslinks “Progress in Cancer Care – A tsunami of promises or Game Changing Strategies?”.

Oslo Cancer Cluster’s annual meeting gathered more than 350 delegates from all over Norway at the Oslo Cancer Cluster Innovation Park, and more than 50 participants followed the live stream. The record high participation shows the large interest in translational cancer research and the importance of the programme for the Norwegian oncology community.

Cancer Crosslinks has become one of the largest national meeting places for oncologists, haematologists, translational researchers, regulatory experts and industry representatives. The meeting offers a full day educational program.

The aim of the conference is to stimulate broader interactions between researchers and clinicians, to encourage translational and clinical research, and to inspire collaborations. Novel partnerships between industry, academia and authorities are essential to deliver new treatments and diagnostics to Norwegian cancer patients.

“At the start of 2020, cancer patients have more treatment options than ever before. Immuno-oncology is firmly established as the fourth pillar of cancer treatment and the tremendous progress in the field is reflected in increased survival rates,” said Jutta Heix, Head of International Affairs, Oslo Cancer Cluster. “However, many patients do not benefit from novel treatments and we still have significant gaps in our understanding of the complex biological mechanisms. Deciphering this complexity is a task for the decade to come. The Cancer Crosslinks 2020 speakers are shedding light on emerging concepts and key challenges and discuss how they are addressing them to advance cancer care.”

The audience at Cancer Crosslinks 2020.

The audience at Cancer Crosslinks 2020. Photo: Cameo Productions UB/Oslo Cancer Cluster

An inspiring programme

Referring to a record number of new oncology drug approvals in recent years and an enormous global pipeline of drugs in late-stage development, this year’s programme addressed the question “Progress in Cancer Care – A Tsunami of Promises or Game-Changing Strategies?”. Distinguished international experts from leading centres in the US and Europe presented emerging concepts, recent progress and key questions to be addressed for both solid and haematological cancers.

Cancer researchers and clinicians from all of Norway enjoyed excellent presentations and engaging discussions with speakers and colleagues.

“Cancer Crosslinks 2020 gave me an opportunity to listen to talks by international top scientists, and discuss some of the latest developments in translational cancer research with meeting participants from academia and industry in a relaxed and inspiring setting,” said Johanna Olweus, Head of Department of Cancer Immunology at the Institute for Cancer Research.

“Cancer Crosslinks is always a meeting that makes me proud of being part of Oslo Cancer Cluster. It is inspiring to see Norwegian and international participants come together to discuss recent progress in cancer research and how to develop cancer treatments for the patients,” said Øyvind Kongstun Arnesen, Chairman of the Board, Oslo Cancer Cluster.

The day programme was complemented with an evening reception in the city center where speakers and delegates continued their lively discussions and listened to an inspiring talk by Ole Petter Ottersen, President of Karolinska Institute, at Hotel Continental in Oslo.

Cancer Crosslinks was established by Oslo Cancer Cluster in 2009 in collaboration with the pharmaceutical company Bristol-Myers Squibb.

“Cancer Crosslinks 2020 has been a fantastic conference, where the presenters have given an excellent description of current and near future achievements within cancer research and the importance of understanding the underlying biology of cancer to rationally give patients the correct cancer therapy. In particular within immunotherapy, there is a need to understand the dynamic complexity of tumor immunology and how to apply the best and tailored immuno-oncology based treatment strategy for cancer patients,” said Ali Areffard, Disease Area Specialist Immuno-Oncology, Bristol-Myers Squibb.

This year, the pharmaceutical company Sanofi Genzyme Norway was a proud co-sponsor of the meeting.

“It was great to be able to provide a platform for interaction between the Norwegian scientific cancer environment and top international research capacities. Therefore, it was with huge enthusiasm Sanofi Genzyme co-sponsored this important conference. New treatment options in oncology are developing fast, where new treatment modalities provide clinicians with additional and superior options. New treatments specifically targeting the malignant cells, as well as activating the host immune response towards the cancer, provides tools to significantly improve current cancer treatments. This year’s Cancer Crosslinks conference gave an excellent insight into this,” said Knut Steffensen, Medical Advisor Hematology Nordic & Baltics, Sanofi Genzyme.

Interview with Prof. Jason Luke

View the interview with Prof. Jason Luke, by HealthTalk, in the video below:

 

The speakers at Cancer Crosslinks 2020

Jason J. Luke, Director of the Cancer Immunotherapeutics Center, Associate Professor of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center

Jason J. Luke, MD, FACP, Director of the Cancer Immunotherapeutics Center, Associate Professor of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Stefani Spranger, Howard S. and Linda B. Stern Career Development Assistant Professor, Koch Institute for Integrative Cancer Research at MIT, Cambridge

Stefani Spranger, Howard S. and Linda B. Stern Career Development Assistant Professor, Koch Institute for Integrative Cancer Research at MIT, Cambridge, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Harriet Wikman, Professor, Group Leader, Center for Experimental Medicine, Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf

Harriet Wikman, Professor, Group Leader, Center for Experimental Medicine, Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

Vessela Kristensen, Professor, Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital

Vessela Kristensen, Head of Research and Development and Director of Research at the Dept. of Medical Genetics, Oslo University Hospital, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Peter A. Fasching, Professor of Translational Gynecology and Obstetrics, University Hospital and Comprehensive Cancer Center Erlangen-EMN

Peter A. Fasching, Professor of Translational Gynecology and Obstetrics, University Hospital and Comprehensive Cancer Center Erlangen-EMN, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

Karl Johan Malmberg, Professor, Group Leader Dept. of Cancer Immunology and Director STRAT-CELL, Oslo University Hospital, Norway.

Karl Johan Malmberg, Professor, Group Leader Dept. of Cancer Immunology and Director STRAT-CELL, Oslo University Hospital, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Michel Sadelain, Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center

Michel Sadelain, MD, PhD, Professor, Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Bjørn Tore Gjertsen, Consultant Hematology, Haukeland University Hospital, Norway.

Bjørn Tore Gjertsen, Professor of Hematology, Centre for Cancer Biomarkers CCBIO, Dept. of Clinical Science, University of Bergen, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Hermann Einsele, Professor, Chair, Dept. of Internal Medicine II, Head of the Clinical and Translational Research Program on Multiple Myeloma, Wuerzburg University Hospital

Hermann Einsele, Professor, Chair, Dept. of Internal Medicine II, Head of the Clinical and Translational Research Program on Multiple Myeloma, University Hospital Wuerzburg, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

 

Sign up to our monthly newsletter

The High Throughput Screening Lab at SINTEF. Photo: Thor Nielsen / SINTEF

SINTEF to develop methods in immuno-oncology

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

SINTEF and Catapult Life Science are looking for new partners to develop methodology for cancer immunotherapy.

“We want to develop methods within immunotherapy, because this is currently the most successful strategy for improving cancer treatments and one of the main directions in modern medicine,” says Einar Sulheim, Research Scientist at SINTEF.

The Norwegian research organization SINTEF is an Oslo Cancer Cluster member with extensive knowledge in characterisation, analysis, drug discovery and development of conventional drugs.

The new project on methodology for cancer immunotherapy recently started in April 2019 and is a collaboration with Catapult Life Science, a new Oslo Cancer Cluster member. The aim is to help academic groups and companies develop their immunotherapy drug candidates and ideas.

Help cancer patients

Ultimately, the main aim is of course that the project will benefit cancer patients. Immunotherapy has shown to both increase life expectancy and create long term survivors in patient groups with very poor prognosis.

“We hope that this project can help streamline the development and production of immunotherapeutic drugs and help cancer patients by helping drug candidates through the stages before clinical trials.” Einar Sulheim, Research Scientist at SINTEF

 

Develop methodology

The project is a SINTEF initiative spending NOK 12,5 million from 2019 to 2023. SINTEF wants to develop methodology and adapt technology in high throughput screening to help develop products for cancer immunotherapy. This will include in vitro high throughput screening of drug effect in both primary cells and cell lines, animal models, pathology, and production of therapeutic cells and antibodies.

 

High throughput screening is the use of robotic liquid handling systems (automatic pipettes) to perform experiments. This makes it possible not only to handle small volumes and sample sizes with precision, but also to run wide screens with thousands of wells where drug combinations and concentrations can be tested in a variety of cells.

 

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

 

Bridging the gap

Catapult Life Science is a centre established to bridge the gap between the lab and the industry by providing infrastructure, equipment and expertise for product development and industrialisation in Norway. Their aim is to stimulate growth in the Norwegian economy by enabling a profitable health industry.

“In this project, our role will be to assess the industrial relevance of the new technologies developed, for instance by evaluating analytical methods used for various phases of drug development.” Astrid Hilde Myrset, CEO Catapult Life Science

A new product could for example be produced for testing in clinical studies according to regulatory requirements at Catapult, once the centre achieves its manufacturing license next year.

“If a new method is intended for use in quality control of a new regulatory drug, Catapult’s role can be to validate the method according to the regulatory requirements” Myrset adds. 

SINTEF and Catapult Life Science are now looking for partners.

Looking for new partners

Einar Sulheim sums up the ideal partners for this project:

“We are interested in partners developing cancer immunotherapies that see challenges in their experimental setups in terms of magnitude, standardization or facilities. Through this project, SINTEF can contribute with internal funding to develop methods that suit their purpose.”

 

Interested in this project?

From the left: Hakan Köksal, PhD student, and Pierre Dillard, scientist, are splitting cells in the lab at Oslo Cancer Cluster Incubator. They are two of the scientists behind the new Norwegian study described in this article.

The first Norwegian CAR

Made in Oslo by a team of researchers from Oslo University Hospital, the first ever Norwegian CAR T cell is now a fact. A potential treatment based on this result depends on a clinical study.

A new Norwegian study shows a genetically modified cell-line with great potential as treatment for patients that are not responding to established CAR T cell therapies. This form of immuno-therapy for cancer patients has recently been approved in many countries, including Norway.

“We hope that the Norwegian authorities will be interested in transforming this research into benefits for Norwegian patients.” Hakan Köksal

 

 

What is a CAR?

Before we go into the research, let us clarify an essential question. What is a CAR? Chimeric antigen receptor (CAR) T cells are T cells that have been genetically engineered to produce an artificialreceptorwhich binds a protein on cancer cells.

How does this work? T cells naturally recognize threats to the body using their T cell receptors, but cancer cells can lock onto those receptors and deactivate them. The new CAR T cell therapies are in fact genetic manipulations used to lure a T cell to make it kill cancer cells. This is what a CAR is doing, indeed CARs replace the natural T-cell receptors in any T cells and give them the power to recognize the defined target – the cancer cell.

CAR-T cell therapy is used as cancer therapy for patients with B-cell malignancies that do not respond to other treatments.

 A severe consequence of using CAR T cell therapy is that it effectively wipes out all the B cells in the patient’s body — not only the cancerous leukemia cells or the lymphoma, but the healthy B cells as well. Since B-cells are an important part of the immune system, it goes without saying that the treatment comes with risks.

Micrograph of actin cytoskeleton of T-cells. The cell is about 10µm in diameter. Photo: Pierre Dillard

Micrograph of actin cytoskeleton of T-cells. The cell is about 10µm in diameter. Photo: Pierre Dillard

T cells: T lymphocytes (T cells) have the capacity to kill cancer cells. These T cells are a subtype of white blood cells and play a central role in cell-mediated immunity.

 

Made in Norway  

Now let us move on to the new research. This particular construct was designed from an antibody that was isolated in the 1980’s at the Radium Hospital in Oslo.

The CAR construct was designed, manufactured and validated in two laboratories in the Radium Hospital campus. One is the laboratory of Immunomonitoring and Translational Research of the Department of Cellular Therapy, OUH, located at the Oslo Cancer Cluster Incubator. This laboratory is led by Else Marit Inderberg and Sébastien Wälchli. The other is the laboratory of the Lymphoma biology group of the Department of Cancer Immunology, Institute for Cancer Research, OUH. This laboratory is led by June Helen Myklebust and Erlend B. Smeland.

“Even the mouse was Norwegian.” Hakan Köksal

The pre-clinical work that made the Norwegian CAR was completed in March 2019.

In the research paper “Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma”, published in the journal Blood Advances, the research team tests an artificially produced construct calledCD37CAR and finds that it is especially promising for patients suffering from multiple types of B-cell lymphoma. This may be treated successfully with novel cell-based therapy.

It now needs to be approved by the authorities and gain financial support to be further tested in a clinical study in order to benefit Norwegian patients.

 

The first CAR-therapy

CAR-based therapy gained full attention when the common B-cell marker CD19 was targeted and made the basis for the CAR T cell therapy known as Kymriah (tisagenlecleucel) from Novartis.

It quickly became known as the first gene therapy allowed in the US when it was approved by the US Food and Drug Administration (FDA) just last year, in 2018, to treat certain children and young adults with B-cell acute lymphoblastic leukemia. Shortly after, the European Commission also approved this CAR T cell therapy for young European patients. The Norwegian Medicines Agency soon followed and approved the treatment in Norway.

“CD19CAR was the first CAR construct ever developed, but nowadays more and more limitations to this treatment have emerged. The development of new CAR strategies targeting different antigens has become a growing need.” Dr. Pierre Dillard

 

Not effective for all

Although the CD19CAR T cell therapy has shown impressive clinical responses in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma, not all patients respond to this CAR T treatment.

In fact, patients can become resistant to CD19CAR. Such relapse has been observed in roughly 30% of the studies of this treatment. Thus, alternative B-cell targets need to be discovered and evaluated. CD37 is one of them.

“You could target any antigen to get a new CAR, but it is always a matter of safety and specificity.” Hakan Köksal said.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

 

The Norwegian plan B

The novel Norwegian CAR T is the perfect option B to the CD19CAR.

 “The more ammunition we have against the tumours, the more likely we are to get better response rates in the patients.” Hakan Köksal

The CD37CAR T cells tested in mouse models in this Norwegian study, show great potential as treatment for patients that are not responding to the established CD19CAR-treatment.

“More and more labs are studying the possibility of using CAR therapy as combination, i.e. CAR treatments targeting different antigens. Such a strategy will significantly lower the probability of patients relapsing.” Dr. Pierre Dillard said.

The CD37CAR still needs to be tested clinically. The scientists at OUS underline the importance of keeping the developed CD37CAR in Norway and having it tested in a clinical trial.

It is a point to keep it here and potentially save patients here. We would like to see the first CD37CAR clinical study here in Norway.” Hakan Köksal

 

More from the Translational Research Lab of the Department of Cellular Therapy, OUH: 

 

Dr. Nadia Mensali (in the middle) and her colleagues from Oslo University Hospital in their cell lab at Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

Natural killer cells dressed to kill cancer cells

Oslo, Norway, 26.04.2017. Photographs from Oslo Cancer Cluster (OCC), an oncology research and industry cluster dedicated to improving the lives of cancer patients by accelerating the development of new cancer diagnostics and medicines. Photographs by Christopher Olssøn

New research: A new study may potentially enable scientists to provide cancer immunotherapy that is cheaper, faster and more manageable.

New work by researchers with laboratories at Oslo Cancer Cluster Incubator may help to dramatically improve a T cell-based immunotherapy approach so that it can benefit many more patients.

 

T cell assassins

T cells are the professional killers of the immune system – they have a unique capability to specifically recognize ‘foreign’ material, such as infected cells or cancer cells. This highly specific recognition is achieved through receptors on the surface of T cells, named T cell receptors (TCRs). Once its receptor recognizes foreign material, a T cell becomes activated and triggers the killing of the infected or cancerous cell.

T cell receptors (TCRs): receptors on the surface of T cells, that recognize foreign material and activate the T cell. This triggers the killing of the infected or cancerous cell by the T cell.

 

Adoptive cell therapy 

Unfortunately, many cancers have adapted fiendish ways to avoid recognition and killing by T cells. To combat this issue, an immunotherapy approach known as adoptive cell therapy (ACT) has been developed in recent years. One such ACT approach is based on the injection of modified (or ‘re-directed’) T cells into patients. The approach is further explained in the illustration below.

 

Illustration from the research paper ‘NK cells specifically TCR-dressed to kill cancer cells’.

 

The left side of the illustration shows how redirected T-cell therapy involves:

1) Harvesting T cells from a cancer patient

2) Genetic manipulation of T cells to make them express an ideal receptor for recognizing the patient’s cancer cells

3) Growing T cells in culture to produce high cell numbers

4) Treating patients with large quantities of redirected T cells, which will now recognize and kill cancer cells more effectively

 

An alternative approach 

Adoptive T cell therapy has delivered very encouraging results for some cancer patients, but its application on a larger scale has been limited by the time consuming and costly nature of this approach. In addition, the quality of T cells isolated from patients who have already been through multiple rounds of therapy can sometimes be poor.

Researchers have long searched for a more automated form of adoptive cell therapy that would facilitate faster and more cost-effective T cell-based cancer immunotherapy.

One approach that has seen some success involves the use of different immune cells called Natural Killer cells – NK cells in brief.

Despite their great potential, NK cells have unfortunately not yet been proven to provide a successful alternative to standard T cell-based cancer immunotherapy. One major reason for this may be that, because NK cells do not possess T cell receptors, they are not very effective at specifically detecting and killing cancer cells.

NK cell lines: Natural Killer cells (NK cells) have the ability to recognise and kill infected or cancerous cells. Scientists have been able to manipulate human NK cells so that they grow without restriction in the lab. This is called a cell line. It enables a continuous and unlimited source of NK cells that could be used to treat cancer patients.

 

Cells dressed to kill

The group led by Dr. Sébastien Wälchli and Dr. Else Marit Inderberg at the Department of Cellular Therapy aimed to address this issue and improve NK cell-based therapies.

They reasoned that by editing NK cells to display anti-cancer TCRs on their cell surface they could combine the practical benefits of NK cells with the potent cancer killing capabilities of T cells. This is shown in the right hand side of the illustration above.

The researchers found that by simply switching on the production of a protein complex called CD3, which associates with the TCR and is required for T cell activation, they could indeed induce NK cells to display active TCRs. These ‘TCR-NK cells’ acted just like normal T cells, including their ability to form functional connections to cancer cells and subsequently mount an appropriate T cell-like response to kill cancer cells.

This was a surprising and important finding, as it was not previously known that NK cells could accommodate TCR signaling.

This video shows TCR-NK cell-mediated killing of cancer cells in culture. The tumour cells are marked in green. Tumour cells that start dying become blue. The overlapping colours show dead tumour cells.

 

The researchers went on to show that TCR-NK cells not only targeted isolated cancer cells, but also whole tumours.

The method was proven to be effective in preclinical studies of human colorectal cancer cells in the lab and in an animal model.  This demonstrates its potential as an effective new form of cancer immunotherapy.

 

Paving the way

Lead researcher Dr. Nadia Mensali said:

“These findings pave the way to the development of a less expensive, ready-to-use universal TCR-based cell therapy. By producing an expansive ‘biobank’ of TCR-NK cells that detect common mutations found in human cancers, doctors could select suitable TCR-NK cells for each patient and apply them rapidly to treatment regimens”.

Whilst further studies are needed to confirm the suitability of TCR-NK cells for widespread treatment of cancer patients, the researchers hope that these findings will be the first step on the road towards off-the-shelf immunotherapy drugs.

 

  • Read the whole research paper at Science Direct. The paper is called “NK cells specifically TCR-dressed to kill cancer cells”.
  • The researchers behind the publication consists of Nadia Mensali, Pierre Dillard, Michael Hebeisen, Susanne Lorenz, Theodossis Theodossiou, Marit Renée Myhre, Anne Fåne, Gustav Gaudernack, Gunnar Kvalheim, June Helen Myklebust, Else Marit Inderberg, Sébastien Wälchli.
  • Read more about research from this research group in this article from January.
  • Read more about Natural Killer cells in this Wikipedia article.

 

Sign up to OCC newsletter

The panel discussion during Cancer Crosslinks 2019 was about the need to implement precision diagnostic methods in Norwegian health care. In the panel from the left: Kristin Vinje, Vice-Dean at the Faculty of Mathematics and Natural Sciences, University of Oslo, Bjørn Tore Gjertsen (hidden in picture), Professor at Haukeland University Hospital and University of Bergen, Hege G. Russnes, Senior Consultant and Researcher at Oslo University Hospital, Ola Myklebost, Professor at University of Bergen and Christian Kersten, Senior Consultant at Center for Cancer Treatment, Sørlandet Hospital. All photos: Fullscreen Visuals

Getting genomics into healthcare: look to the UK

Discussing health care at Cancer Crosslinks 2019

During Cancer Crosslinks 2019, one thing was crystal clear: there is a need to include broader genomic testing into treatments for cancer patients in Norway.

“We are lacking behind here in Norway!”

Professor Ola Myklebost, from the Department of Clinical Science at the University of Bergen, was definitely ready for action in the panel debate at Cancer Crosslinks 2019, fittingly named “Call for Action”.

The panel and the audience of about 300 people had just listened to the talk given by James Peach. He is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, and prior to this, he was the Managing Director at the main programme for Genomics England from 2013 to 2017 and led the UK’s Stratified Medicines Program.

Peach told the audience how they have been implementing precision medicine into the public health care system (NHS) in the UK, using genomic testing, during the last decade. He demonstrated how the industry is part of this public endeavour, how political support and investment contributed to industry development, and how they addressed complex issues like sharing health data and using artificial intelligence.

It started with very little.

“In 2010, we had no structure”, Peach told the audience.

 

James Peach presenting at Cancer Crosslinks 2019

Sequencing 100,000 genomes

Thanks to all the British cancer patients who consented to Genomics England using their data, and a lot of common public-private efforts, Genomics England has now reached its goal of sequencing 100,000 whole genomes from NHS patients, according to their webpage. It takes a lot to accomplish this number, but luckily there are things to learn from the UK effort.

“Circulating tumour DNA testing is absolutely necessary”, Peach said from the podium.

The Life Science Sector deal from the British government outlines this public-private effort. It shows how significant government commitment, funding and strategic actions triggered investment and initiatives from the life science industry. You can read the entire document at the official webpage of the British Department of Business, Energy and Industrial Strategy, following this link.

James Peach visited Norway earlier as a speaker at Cancer Crosslinks 2012. Returning now, he was truly surprised about the current state of precision medicine in Norway.

 

Concerned about Norway

In an interview with Oslo Cancer Cluster, James Peach shared a concern as an answer to the question “What impressions are you left with after this conference?” 

“It has left me quite concerned about the state of precision medicine in Norway. I thought you would be looking forward to the things you could do, but it turns out that there are actually some things that you should have done already.”

“Like what things?” 

“Like universal application of a cancer panel test that is commercially feasible and deals around getting your data shared appropriately.”

Do you think we can have a Genomics Norway?”

“Of course. It is probably about combining two things. One is that you got to get the basic stuff right. People need to have access to gene tests for their clinical care. Luckily the people here are a group of experts who are all connected to each other and who understand the system. It is not a massive system. I think there is a real chance to choose an area where Norway could do it exceptionally well. What that area is, is for you to choose.”

 

Concerns in Norway

Back in the panel discussion, Hege G. Russnes, Pathologist, Senior Consultant and Researcher at Oslo University Hospital, was getting involved:

“We need more information to help clinicians make therapy decisions. (…) Norway has no plan or recommendation for multi gene tests.”

Christian Kersten, Senior Consultant at the Center for Cancer Treatment at Sørlandet Hospital, agreed.

“I’m the clinician, I treat patients, patients die because of metastasis. I have been treating cancer patients for 20 years now and I feel it increasingly difficult to keep the trust of the patient.”

“If you ask the patients, they will sign the papers with consent of sharing data in 99% of the cases”, Myklebost added.

“We are only 5 million, we do not have to reinvent the wheel. Erna Solberg should invite James Peach for a cup of tea”, Christian Kersten said, finishing up the panel talk.

 

The entire panel debate is available to watch at the webcast webpage:

WATCH THE PANEL DEBATE

 

More on UK Medicines Discovery Catapult 

Did this brief article make you interested in the work that James Peach and UK Medicines Discovery Catapult does? In this short video, Peach explains the challenges with access to health data for drug discovery and how to overcome them:

 

More from Cancer Crosslinks 

We have more from Cancer Crosslinks 2019 coming up. Stay tuned and subscribe to our newsletter, and you will not miss videos of the talks and interviews with the other distinguished speakers at the conference.

New research from the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital is now available in a video and an article in the the Journal of Visualized Experiments, Jove. Photo: Christopher Olssøn.

New research: 3D structure tumors in immunotherapy

Researcher testing lab sample.

New work from cancer researchers at the Department of Cellular Therapy could help to streamline the development of exciting new immunotherapy approaches for treating cancer.

Cancer treatments that aim to switch on a patient’s immune system to kill tumor cells – so-called immunotherapy approaches – have received much attention and encouraging results in recent years. Now, the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital has devised a new experimental approach that could improve early stages of the immunotherapy development pipeline.

The unit is present in Oslo Cancer Cluster Incubator with a translational research lab, led by Drs. Else Marit Inderberg and Sébastien Wälchli.

 

Researchers in laboratory.

Dr. Sébastien Wälchli and colleagues in the translational research lab in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

 

CAR T cells drive new successes

Our immune systems are generally very good at recognizing foreign infectious agents and disposing of them appropriately. However, although our immune systems are capable of recognizing tumors as a threat, cancer cells have adapted mechanisms that enable them to evade the immune response. Immunotherapy is the name given to a range of different approaches that aim to overcome this problem by improving the immune system’s ability to target cancer cells.

One relatively new example of an immunotherapy approach comes from CAR T cells. These are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells. The modified T cells are then placed back into the patient so that they can ‘home in’ on the tumor and kill the cancer cells.

Read about related research: T-cells and the Nobel Price

 

Difficult for solid cancers

Current models for testing new CAR T cells aren’t always optimal. Although CAR T cells have shown encouraging results in treating some cancers, particularly the blood cancers leukemia and lymphoma, the development of CAR T cells for non-blood, or ‘solid’, cancers has been more difficult.

In part, this is due to the fact that tumor models currently used in early stages of testing involve two-dimensional monolayers of cancer cells, which do not reflect the complex three-dimensional structure and organization of solid tumors found in patients.

Consequently, CAR T cells that show encouraging results using these two-dimensional models often produce less effective results at later stages of the development pipeline, meaning time, effort and resources are wasted.

 

3D tumor spheroids

To improve the early stages of testing new CAR T cells, Dr. Wälchli’s group has developed a new approach that enables researchers to grow three-dimensional cancer cell structures, or ‘spheroids’, in the lab, and to test the effect that CAR T cells have on killing off these spheroids.

Compared to current two-dimensional methods, the spheroids are more similar in complexity and structure to tumors found in patients.

In a recent publication in the Journal of Visualized Experiments, this group demonstrated for the first time that their spheroid approach has the potential to provide a useful new tool for developing CAR T cells.

They generated spheroids using colorectal cancer cells – a type of cancer for which there is currently no effective CAR T cell therapy available. These cancer cells were modified so that they possessed a molecule on their cell surface called CD19, which is known to be recognized by certain CAR T cells. The researchers then incubated these spheroids with CD19-targeting CAR T cells and used advanced live imaging techniques to track the effect on cancer spheroids.

To help other research groups who would like to start using the spheroid technique, Dr. Wälchli’s publication is accompanied by this video which introduces the approach and provides a basic overview of how it works. The Journal of Visualized Experiments requires a subscription to see the entire video. You can also read a PDF of the article “A Spheroid Killing Assay by CAR T Cells” without a subscription.

 

Successful approach

As expected, shortly after adding CAR T cells, the researchers could detect that spheroids were shrinking due to cancer cell death, proving that their approach successfully measures CAR T cell-induced tumor clearance in a quantitative manner.

Discussing the work, Dr. Wälchli says, “We believe this method can help to answer key questions about using 3D structure tumors as a suitable alternative for testing new immunotherapy approaches.”

The approach now opens the door for testing a range of different target molecules in combination with new CAR T cells targeting those molecules.

 

Fast, affordable and straightforward

Dr. Wälchli believes many researchers could benefit from the spheroid technique. He continues,

“A major advantage to our approach is that it is fast, affordable and straightforward, meaning any research group with the right equipment can test the effect of their immunotherapy on 3D tumors before moving to animal models”.

From the left: Professor Naiyer Rizvi, Dr. Marco Gerlinger and Dr. Aaron Goodman. Photos: Columbia University Medical Center / ICR / UC San Diego Health

International speakers at Cancer Crosslinks

International speakers at Cancer Crosslinks 2019

How can research help implement the next wave of precision oncology for patients? Meet the experts behind the research.

 

These leading international experts are part of the programme at Oslo Cancer Cluster Innovation Park, 17 January.
Not signed up for the 11thCancer Crosslinks yet? Join in here!

 

Professor Naiyer Rizvi is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development. He is the director of both thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, USA.

Prior to joining Columbia University Medical Center, his clinical research at Memorial Sloan Kettering Cancer played a significant role in the FDA approval path of a new class of immunotherapies, called immune checkpoint inhibitors, for melanoma and lung cancer.

Rizvi studies mechanisms of sensitivity and resistance to immunotherapy. Through genetic testing of tumours, he has been able to improve the understanding of why immune checkpoint inhibitors work in certain patients.

Rizvi is also studying why certain cancers do not respond to immune checkpoint inhibitors. This way we can find better ways to harness the immune system to attack cancer cells.

He oversees phase 1 immunotherapy research in solid tumours at Columbia University Medical Center and is conducting key clinical studies of novel immunotherapy drugs and immunotherapy combinations to help more patients in the fight against cancer.

Professor Naiyer Rizvi

During Cancer Crosslinks, Professor Rizvi will give the opening keynote speech titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”.

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers, including acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL) and multiple myeloma. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

Dr. Goodman performs stem cell transplants for cancer treatment. He also treats people with rare haematologic disorders using experimental therapeutics.

His research interests include immunotherapy and cellular therapy treatment for haematologic malignancies and identifying biomarkers for response to immunotherapy.

Dr. Aaron Goodman

During Cancer Crosslinks, Dr. Aaron Goodman will present and discuss the clinical aspects of tumour mutational burden and other tissue agnostic biomarkers for cancer immunotherapy.

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

Dr. Sweis is the recipient of numerous awards. In 2017, he was elected to co-lead TimIOs, an international project aimed at tackling tumor heterogeneity to enhance immunotherapy responses supported by the Society for Immunotherapy of Cancer (SITC).

Dr. Randy F. Sweis

During Cancer Crosslinks, Dr. Randy F. Sweis presents his work on immunophenotypes: The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers.

Dr. Gerlinger uses genomics technologies for treatment personalization. He treats patients with gastrointestinal cancers at The Royal Marsden NHS Foundation Trust.

One of the key aims of his work is to develop strategies to improve predictive and prognostic biomarker performance and the efficacy of drug therapy in heterogeneous cancers.

He contributes to The Darwin Cancer Blog– on mutational evolution of cancer.

Dr. Marco Gerlinger

During Cancer Crosslinks, Dr. Marco Gerlinger will share the latest insights into cancer evolution and discuss the limits of predictability in precision cancer medicine. 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In this video from June, you get a preview of the subject he will talk about at Cancer Crosslinks: 

During Cancer Crosslinks, Dr. Lars Bullinger will give an international keynote speech about haematological cancers, emerging treatment opportunities and the impact of big data. 

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017.

Peach is a precision medicine strategist and operational leader with investment, commercial and public sector experience across cancer, rare diseases, and genetics. James Peach gave the opening keynote at Cancer Crosslinks 2012 – at that time as the Director for Stratified Medicine at Cancer Research UK, London.

In this video James Peach explains the challenges with access to health data for drug discovery and how to overcome them:

During Cancer Crosslinks, James Peach will present his perspectives on the implementation of precision medicine in the UK and discuss the status, lessons learned and the way forward. 

 

Not signed up for Cancer Crosslinks yet? Join in here!

 

 

This is a T-cell, or more precisely, an actin cytoskeleton of a T lymphocyte. The picture is obtained by a special microscope. The cell’s size is 38*38 μm. Photo: Pierre Dillard

T-cells and the Nobel Price

What does the Nobel Prize have to do with cancer research in Oslo Cancer Cluster?

This year the Nobel Prize for Physiology and Medicine was awarded to James P. Allison and Tasuku Honjo for their work on unleashing the body’s immune system to attack cancer. This was a breakthrough that has led to an entirely new class of drugs and brought lasting remissions to many patients who had run out of options.

A statement from the Nobel committee hailed the accomplishments of Allison and Honjo as establishing “an entirely new principle for cancer therapy.”

This principle, the idea behind much of the immunotherapy we see developing today, is shared by several of our Oslo Cancer Cluster members, including Oslo University Hospital and the biotech start-up Zelluna.

– This year’s Nobel Price winners have contributed to giving new forms of immunotherapy treatments to patients, resulting in improved treatments to cancer types that previously had poor treatment alternatives, especially in combination with other cancer therapies, said doctor Else Marit Inderberg as a comment to the price.

She leads the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital. The unit is present in Oslo Cancer Cluster Incubator with a translational research lab.

Inderberg has been studying and working with T-cells since 1999, first within allergies and astma, before she was drawn to cancer research and new cancer therapies in 2001.

So, what is a T-cell?
T-cells have the capacity to kill cancer cells. These T-cells are a subtype of white blood cells and play a central role in cell-mediated immunity. They are deployed to fight infections and cancer, but malignant cells can elude them by taking advantage of a switch – a molecule – on the T-cell called an immune checkpoint. Cancer cells can lock onto those checkpoints, crippling the T-cells and preventing them from fighting the disease.

The drugs based on the work of Nobel Prize winners Allison and Honjo belong to a class called checkpoint inhibitors – the same immune checkpoint that we find on T-cells. Drugs known as checkpoint inhibitors can physically block the checkpoint, which frees the immune system to attack the cancer.

Group leaders Else Marit Inderberg and Sébastien Wälchli often work in one of the cell labs in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

 

– We work on other ways of activating the immune system, but in several clinical trials we combine cancer vaccines or other therapies with the immune-modulating antibody, the checkpoint inhibitors, which the Nobel Price winners developed, Inderberg explained.

Inderberg and her team of researchers in the translational research lab in Oslo Cancer Cluster Incubator use the results from the Nobel Price winners’ research in their own research in order to develop their own therapy and learn more about the mechanisms behind the immune cells’ attack on the cancer cells and the cancer cells’ defence against the immune system.

– This Nobel Prize is very inspiring for the entire field and it contributes to making this kind of research more visible, Else Marit Inderberg added.

– Our challenge now is to make new forms of cancer therapies available for a large number of patients and find ways to identify patient groups who can truly benefit from new therapies – and not patients who will not benefit. Immunotherapy also has some side effects, and it is important that we keep working on these aspects of the therapy as well.

From research to company
Most of the activity of the translational research lab in Oslo relies on the use of a database of patient samples called the biobank. This specific biobank represents an inestimable source of information about the patients’ response to immunological treatments over the years. Furthermore, the patient material can be reanalysed and therapeutic molecules isolated. This is the basis of the Oslo Cancer Cluster member start-up company Zelluna.

 

Want to know more about Zelluna and the research they are spun out of?

This is a story about their beginning.

Curious about new research from the Department of Cellular Therapy in Oslo?

More on their webpage.

 

The Vaccibody Team at Oslo Science Park. Photo: Vaccibody

Prestigious partnership for Vaccibody

Oslo Cancer Cluster member Vaccibody is entering into a clinical collaboration with the American biopharmaceutical company Nektar Therapeutics.

The aim of the collaboration is to explore positive effects from the combination of Vaccibody’s personalized cancer vaccine VB10.NEO and Nektar Therapeutics cancer drug NKTR-214. Pre-clinical results of the combination are very positive and the collaboration will mark the start of a clinical trial stage.

The clinical trials will include patients with head and neck cancer and initially involve 10 patients.

What is Nektar?
Nektar Therapeutics is not just any company when it comes to immunotherapy. At Nasdaq their market value is set as high as 10 billion dollars.

– For a year now, Nektar might be the most talked about company within immunotherapy and this winter they landed the largest deal of its kind with Bristol Meyers-Squibb (BMS), says Agnete Fredriksen, President and Chief Scientific Officer, in an interview with Norwegian newspaper Finansavisen.

Help more patients
BMS and Nektar started collaborating on the development of the immunotherapy drug NKTR-214, the same drug that is part of the collaboration with Vaccibody, with a potential worth of 3.6 billion dollars.

– That they want to work with us is a nice validation of Vaccibody and makes us able to help even more cancer patients. We hope the combination of our products will lead to even better treatments, Agnete Fredriksen says to Finansavisen.

More about Vaccibody’s cancer vaccine

Nektar and Vaccibody each will maintain ownership of their own compounds in the clinical collaboration, and the two companies will jointly own clinical data that relate to the combination of their respective technologies. Under the terms of the agreement and following the completion of the pilot study, the two companies will evaluate if they will take the partnership to the next stage.

The Norwegian life science stand 2018 at Nordic Life Science Days. Our partners this year were Norway Health Tech, Aleap, University of Oslo: Life Science, The Life Science Cluster, Invent2, NORIN, Nansen Neuroscience Network, LMI, Innovation Norway and The Norwegian Research Council.

Norwegian life science on exhibition

The strong life science actors in Norway joined forces during the conference Nordic Life Science Days 2018.

Oslo Cancer Cluster aims to enhance the visibility of oncology innovation made in Norway by being a significant partner for international clusters, global biopharma companies and academic centres. We used the conference Nordic Life Science Days 2018 in Stockholm this September week to show the growing Norwegian life science environment.

The Norwegian stand
From 2015 onward, we have had a Norwegian stand promoting Norwegian healthcare and life science industry together with other life science actors in Norway. Our partners this year were Norway Health TechAleapUniversity of Oslo: Life ScienceThe Life Science ClusterInvent2NORINNansen Neuroscience NetworkLMI, Centre for Digital Life NorwayInnovation Norway and The Norwegian Research Council. Together we represent the essence of Norwegian Life Science.

 

The Norwegian delegation with Ambassador Christian Syse visited the stand in 2018. From the left: Jutta Heix, International Advisor at Oslo Cancer Cluster, Christian Syse, the Norwegian Ambassador to Sweden, Tina Norlander, Senior Advisor in Innovation Norway and Jeppe Bucher, Intern at the Royal Norwegian Embassy in Stockholm.

 

A European meeting place
There are several important meeting places for life science actors in Europe, such as BIO-Europe, BIO-Europe Spring and Nordic Life Science Days at the top of the list. Oslo Cancer Cluster is the oncology partner at the Nordic Life Science Days.

Are you interested in what the big oncology session during the Nordic Life Science Days 2018 was all about? The topic was cancer immunotherapy, also known as immuno-oncology.

This article gives you the highlights of the session.

More Nordic collaboration
As a region, the Nordic countries are of international importance in the field of cancer research and innovation, especially in precision medicine, and Oslo Cancer Cluster participates in advancing Nordic collaboration. Oslo Cancer Cluster also engages in more cancer specific European events. One example is the Association for Cancer Immunotherapy Meeting (CIMT), which is the largest European meeting in the field of cancer immunotherapy.

Read more about our international work