Oslo Cancer Cluster Innovation Park: A powerhouse for the development of cancer treatments

Innovation Park and the surrounding buildings

This article was originally published in Norwegian on Altomdinhelse.no by Mediaplanet, and was written by Jónas Einarsson, CEO of Radforsk and initiator of Oslo Cancer Cluster, Oslo Cancer Cluster Incubator and Oslo Cancer Cluster Innovation Park. 

We wish to expand Oslo Cancer Cluster Innovation Park with close to 50 000 square metres the next five to seven years. The goal is to develop even better cancer treatments to improve the lives of cancer patients, in close collaboration with the ecosystem around the park.

On 24 August 2015, the Norwegian Prime Minister Erna Solberg opened Oslo Cancer Cluster Innovation Park. In her speech, she said: “Oslo Cancer Cluster Innovation Park will fulfil an important role in the development of the cancer treatments of the future.”

That moment was the starting point for a unique collaboration between cancer researchers, clinicians, teachers, students, business developers and numerous other professions that are needed to develop tomorrow’s cancer treatments.

All of us that work here share a common vision: Oslo Cancer Cluster Innovation Park and the environment around the Norwegian Radium Hospital and the Institute for Cancer Research (Oslo University Hospital) should be an international powerhouse for the development of cancer treatments.

The beginning of a success story

Five years after the opening, we are still fulfilling that vision every day. I would even go so far as to say that we have contributed to a success story:

  • Oslo Cancer Cluster Incubator houses nine start-up companies today, and we are working closely with seven other companies that are located other places due to limited space.
  • The 24 private and public tenants of Oslo Cancer Cluster Innovation Park want more space, since their operations are ever growing.
  • Ullern Upper Secondary School is one of the most sought-after schools in Oslo and the number of students is ever increasing. The students are offered the opportunity to participate in the school collaboration with Oslo Cancer Cluster, to educate the researchers and entrepreneurs of tomorrow. In the autumn of 2019, the researcher programme was initiated at Ullern, which is a unique opportunity for students in Oslo to specialise in biomedical subjects.

Many developments planned

Everything mentioned above is only what is happening inside the Innovation Park. In the nearby area, there are many unique developments that will change the treatment of cancer patients in coming years:

  • In 2023, the new clinic building of the Norwegian Radium Hospital and its specialised proton centre will open.
  • The Institute for Cancer Research is being developed further under the proficient management of Professor Kjetil Taskén. The talented researchers at the Institute are delivering internationally renowned research every day.
  • Oslo University Hospital is the only hospital in Scandinavia accredited as a “Comprehensive Cancer Center”. The accreditation demands constant development of research, infrastructure and treatments.

Still a way to go

Things are still far from perfect. Almost everyday in the news, there are discussions about whether Norwegian cancer patients are offered the best cancer treatments. I believe we still have a way to go. In order to give better cancer treatments, we must heavily invest in the development of:

  • Molecular diagnostics
  • Cell and gene therapy
  • Precision medicine
  • The treatment of antibiotic resistance

Because of the success we have had so far with the Oslo Cancer Cluster Innovation Park and the need to strengthen cancer care further, we wish to expand the Oslo Cancer Cluster Innovation Park during the next five to seven years with close to 50 000 square metres. The first expansion will total 7 000 square metres. The planning scheme begins this year and the building itself will be located between the Innovation Park and the Institute for Cancer Research.

Enormous ambitions

The expansion of the Innovation Park is an important supplement to the plans on developing Oslo into Oslo Science City. We are also a living example of how public-private partnerships is the way to go in order to build a sustainable health industry, like the White Paper on the Health Industry has stated.

Norwegian cancer research is world class. The 15 companies in the Radforsk portfolio has spun out of this research. We have enormous ambitions to contribute even more to the development of the cancer treatments of tomorrow – to improve the lives of cancer patients all over the world.

As Prime Minister Erna Solberg said in her speech on 24 August 2015: “Smart minds and new ideas, students and professors, Norwegians and foreigners, founders and employees. Together for a common goal: to improve the treatment of the approximately 30 000 Norwegians that are diagnosed with cancer every year.”

That statement is still true today.

 


Oslo Cancer Cluster Innovasjonspark:
Kraftsenter for utvikling av kreftbehandling

Vi ønsker å utvide Oslo Cancer Cluster Innovasjonspark med nærmere 50.000 km² de neste fem til syv årene. Målet er å utvikle enda bedre kreftbehandling til det beste for kreftpasienter, i tett samarbeid med økosystemet rundt parken.

Av Jónas Einarsson, administrerende direktør i Radforsk og initiativtaker til Oslo Cancer Cluster, Oslo Cancer Cluster Inkubator og Oslo Cancer Cluster Innovasjonspark.

Den 24. august 2015 åpnet Statsminister Erna Solberg Oslo Cancer Cluster Innovasjonspark. I sin tale sa hun: «Oslo Cancer Cluster Innovasjonspark vil fylle en viktig rolle i utforming av fremtidens kreftbehandling.»

Og med det gikk startskuddet gikk for et unikt samarbeid mellom kreftforskere, klinikere, lærere, elever, forretningsutviklere og en rekke andre profesjoner som trengs for å utvikle morgendagens kreftbehandling.

Felles for alle oss som jobber her, er at vi har én visjon: Oslo Cancer Cluster Innovasjonspark og miljøet rundt med Radiumhospitalet og Institutt for Kreftforskning, skal være et internasjonalt kraftsenter for utvikling av kreftbehandling.

Fem år etter åpningen så lever vi ut denne visjonen hver dag. Jeg vil tørre å påstå at det vi har bidratt til er en suksess:

  • Oslo Cancer Cluster Incubator huser i dag ni oppstartsbedrifter, og vi jobber tett med syv andre som sitter andre steder og som det ikke er plass til
  • Oslo Cancer Cluster Innovasjonspark sine 24 private og offentlige leietakere ønsker mer plass da de stadig utvider sin virksomhet
  • Ullern videregående skole er en av de best søkte skolene i Oslo, og øker stadig elevtallet. Elevene på skolen får tilbud om å delta i det skolefaglige samarbeidet med Oslo Cancer Cluster, for å utdanne morgendagens forskere og entreprenører. Høsten 2019 startet Forskerlinja, et unikt tilbud til skoleelever i Oslo om fordypning i biomedisinske fag

Dette er bare inne i Innovasjonsparken. I området rundt oss skjer det unike ting som endrer måten pasienter med kreft blir behandlet på om få år:

  • I 2023 åpner det nye klinikkbygget på Radiumhospitalet med et spesialisert protonsenter
  • Institutt for Kreftforskning blir stadig videreutviklet under kyndig ledelse av professor Kjetil Taskén. De dyktige forskerne ved instituttet leverer daglig internasjonalt, anerkjent forskning
  • Oslo universitetssykehus er som eneste sykehus i Skandinavia akkreditert som et «Komplett kreftsenter», «Comprehensive Cancer Center». Akkrediteringen krever konstant utvikling av forskning, infrastruktur og behandling

Likevel er ikke tingenes tilstand rosenrød. I media kan vi nesten daglig lese diskusjoner om hvorvidt kreftbehandlingen pasienter i Norge tilbys er den beste. Min påstand er at vi har mye å gå på. For å gi bedre kreftbehandling må vi satse tungt på å utvikle:

  • Molekylær diagnostikk
  • Celle- og genterapi
  • Presisjonsmedisin
  • Behandling av antibiotikaresistens

På bakgrunn av den suksessen vi har hatt med Oslo Cancer Cluster Innovasjonspark så langt, og behovet for å styrke kreftomsorgen ytterligere, ønsker vi de neste fem til syv årene å utvide Oslo Innovasjonsparken med nær 50.000 km². Den første utvidelsen vil være på 7000 km². Prosjekteringen starter i år, og selve bygget vil ligge mellom Innovasjonsparken og Institutt for Kreftforskning.

Utvidelsen av Innovasjonsparken er et viktig tilskudd til planene om å utvikle Oslo som en kunnskapshovedstad, Oslo Science City. Vi er i tillegg et levende eksempel på at privat-offentlig samarbeid er veien å gå for å bygge en bærekraftig helsenæring, slik Stortingsmeldingen om helsenæring slår fast.

Norsk kreftforskning er i verdensklasse. Våre 15 bedrifter i Radforsk-porteføljen er spunnet ut av denne forskningen. Vi har enorme ambisjoner om at vi kan bidra enda mer til utviklingen av morgendagens kreftbehandling – til det beste for kreftpasienter over hele verden.

Som Statsminister Erna Solberg sa i sin tale den 24. august 2015: «Kloke hoder og nye ideer, studenter og professorer, nordmenn og utlendinger, gründere og ansatte. Samlet med ett felles mål: å bedre behandlingen til de om lag 30.000 nordmenn som blir diagnostisert med kreft hvert år.»

Det er like sant i dag.

Cancer Crosslinks 2020 gathered a distinguished group of national and international speakers, and received a record number of meeting delegates.

Cancer Crosslinks 2020

The speakers, chairpersons, introducers and organizers of Cancer Crosslinks 2020Oslo Cancer Cluster

Engaging presentations by leading international and Norwegian oncology experts at the 12th Cancer Crosslinks “Progress in Cancer Care – A tsunami of promises or Game Changing Strategies?”.

Oslo Cancer Cluster’s annual meeting gathered more than 350 delegates from all over Norway at the Oslo Cancer Cluster Innovation Park, and more than 50 participants followed the live stream. The record high participation shows the large interest in translational cancer research and the importance of the programme for the Norwegian oncology community.

Cancer Crosslinks has become one of the largest national meeting places for oncologists, haematologists, translational researchers, regulatory experts and industry representatives. The meeting offers a full day educational program.

The aim of the conference is to stimulate broader interactions between researchers and clinicians, to encourage translational and clinical research, and to inspire collaborations. Novel partnerships between industry, academia and authorities are essential to deliver new treatments and diagnostics to Norwegian cancer patients.

“At the start of 2020, cancer patients have more treatment options than ever before. Immuno-oncology is firmly established as the fourth pillar of cancer treatment and the tremendous progress in the field is reflected in increased survival rates,” said Jutta Heix, Head of International Affairs, Oslo Cancer Cluster. “However, many patients do not benefit from novel treatments and we still have significant gaps in our understanding of the complex biological mechanisms. Deciphering this complexity is a task for the decade to come. The Cancer Crosslinks 2020 speakers are shedding light on emerging concepts and key challenges and discuss how they are addressing them to advance cancer care.”

The audience at Cancer Crosslinks 2020.

The audience at Cancer Crosslinks 2020. Photo: Cameo Productions UB/Oslo Cancer Cluster

An inspiring programme

Referring to a record number of new oncology drug approvals in recent years and an enormous global pipeline of drugs in late-stage development, this year’s programme addressed the question “Progress in Cancer Care – A Tsunami of Promises or Game-Changing Strategies?”. Distinguished international experts from leading centres in the US and Europe presented emerging concepts, recent progress and key questions to be addressed for both solid and haematological cancers.

Cancer researchers and clinicians from all of Norway enjoyed excellent presentations and engaging discussions with speakers and colleagues.

“Cancer Crosslinks 2020 gave me an opportunity to listen to talks by international top scientists, and discuss some of the latest developments in translational cancer research with meeting participants from academia and industry in a relaxed and inspiring setting,” said Johanna Olweus, Head of Department of Cancer Immunology at the Institute for Cancer Research.

“Cancer Crosslinks is always a meeting that makes me proud of being part of Oslo Cancer Cluster. It is inspiring to see Norwegian and international participants come together to discuss recent progress in cancer research and how to develop cancer treatments for the patients,” said Øyvind Kongstun Arnesen, Chairman of the Board, Oslo Cancer Cluster.

The day programme was complemented with an evening reception in the city center where speakers and delegates continued their lively discussions and listened to an inspiring talk by Ole Petter Ottersen, President of Karolinska Institute, at Hotel Continental in Oslo.

Cancer Crosslinks was established by Oslo Cancer Cluster in 2009 in collaboration with the pharmaceutical company Bristol-Myers Squibb.

“Cancer Crosslinks 2020 has been a fantastic conference, where the presenters have given an excellent description of current and near future achievements within cancer research and the importance of understanding the underlying biology of cancer to rationally give patients the correct cancer therapy. In particular within immunotherapy, there is a need to understand the dynamic complexity of tumor immunology and how to apply the best and tailored immuno-oncology based treatment strategy for cancer patients,” said Ali Areffard, Disease Area Specialist Immuno-Oncology, Bristol-Myers Squibb.

This year, the pharmaceutical company Sanofi Genzyme Norway was a proud co-sponsor of the meeting.

“It was great to be able to provide a platform for interaction between the Norwegian scientific cancer environment and top international research capacities. Therefore, it was with huge enthusiasm Sanofi Genzyme co-sponsored this important conference. New treatment options in oncology are developing fast, where new treatment modalities provide clinicians with additional and superior options. New treatments specifically targeting the malignant cells, as well as activating the host immune response towards the cancer, provides tools to significantly improve current cancer treatments. This year’s Cancer Crosslinks conference gave an excellent insight into this,” said Knut Steffensen, Medical Advisor Hematology Nordic & Baltics, Sanofi Genzyme.

Interview with Prof. Jason Luke

View the interview with Prof. Jason Luke, by HealthTalk, in the video below:

Interview with Prof. Michel Sadelain

View the interview with Prof. Michel Sadelain, by HealthTalk, in the video below:

The speakers at Cancer Crosslinks 2020

Jason J. Luke, Director of the Cancer Immunotherapeutics Center, Associate Professor of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center

Jason J. Luke, MD, FACP, Director of the Cancer Immunotherapeutics Center, Associate Professor of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Stefani Spranger, Howard S. and Linda B. Stern Career Development Assistant Professor, Koch Institute for Integrative Cancer Research at MIT, Cambridge

Stefani Spranger, Howard S. and Linda B. Stern Career Development Assistant Professor, Koch Institute for Integrative Cancer Research at MIT, Cambridge, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Harriet Wikman, Professor, Group Leader, Center for Experimental Medicine, Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf

Harriet Wikman, Professor, Group Leader, Center for Experimental Medicine, Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

Vessela Kristensen, Professor, Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital

Vessela Kristensen, Head of Research and Development and Director of Research at the Dept. of Medical Genetics, Oslo University Hospital, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Peter A. Fasching, Professor of Translational Gynecology and Obstetrics, University Hospital and Comprehensive Cancer Center Erlangen-EMN

Peter A. Fasching, Professor of Translational Gynecology and Obstetrics, University Hospital and Comprehensive Cancer Center Erlangen-EMN, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

Karl Johan Malmberg, Professor, Group Leader Dept. of Cancer Immunology and Director STRAT-CELL, Oslo University Hospital, Norway.

Karl Johan Malmberg, Professor, Group Leader Dept. of Cancer Immunology and Director STRAT-CELL, Oslo University Hospital, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Michel Sadelain, Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center

Michel Sadelain, MD, PhD, Professor, Director, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, USA. Photo: Cameo UB Productions/Oslo Cancer Cluster

Bjørn Tore Gjertsen, Consultant Hematology, Haukeland University Hospital, Norway.

Bjørn Tore Gjertsen, Professor of Hematology, Centre for Cancer Biomarkers CCBIO, Dept. of Clinical Science, University of Bergen, Norway. Photo: Cameo UB Productions/Oslo Cancer Cluster

Hermann Einsele, Professor, Chair, Dept. of Internal Medicine II, Head of the Clinical and Translational Research Program on Multiple Myeloma, Wuerzburg University Hospital

Hermann Einsele, Professor, Chair, Dept. of Internal Medicine II, Head of the Clinical and Translational Research Program on Multiple Myeloma, University Hospital Wuerzburg, Germany. Photo: Cameo UB Productions/Oslo Cancer Cluster

 

Sign up to our monthly newsletter

1 650 people attended EHiN 2019 to discuss e-health in Norway. Photo credit: Ard Jongsma / Still Words Photography

EHiN 2019 – highlights

Photo of the audience at the opening of EHiN 2019.

Did you miss EHiN this year? Or simply want to catch up on the highlights relating to cancer research? Read our short summary below.

EHiN, short for e-health in Norway, is Norway’s national conference on e-health. It is a meeting place where decision-makers, the business community and the health sector gather to talk, share knowledge, learn from each other and collaborate.

This year, Oslo Cancer Cluster became a co-owner of EHiN (together with ICT Norway and Macsimum), because we believe new technologies and digital solutions are essential in the development of novel cancer treatments. This will only be possible if public and private organizations find new models of collaboration and EHiN is a great platform to create those future partnerships.

Read this interview to find out more about how new technologies can improve cancer research

 

Photo from the panel discussion on health data at EHiN 2019.

A conversation on health data during day 1 of EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Capturing the value of health data

An engaging dialogue on the value of health data took place at the end of the first day.

Health data will revolutionize how we understand and how we treat diseases, such as cancer. Better diagnosis and monitoring will change how we design our healthcare systems. A central question is how we capture the value of this revolution. Some fear multinationals like Google and Facebook will exploit our unique health data for profit. Others fear that Norwegians will value and protect their health data too well, resulting in innovation happening elsewhere. Is there a golden mean between giving full access to health data and charging the highest price?

Ketil Widerberg, General Manager at Oslo Cancer Cluster, led the conversation with a panel of four. Joanne Hackett, Chief Commercial Officer at Genomics England, brought an international perspective and experiences of how they have collected 100 000 genomes from patients with rare diseases. Sigrid Bratlie, award-winning cancer researcher, shared her knowledge of new cancer treatments and the opportunities they present in conjunction with health data. Heidi Beate Bentzen, Doctoral Research Fellow at University of Oslo, represented some of the legal considerations when dealing with health data. Rajji Mehdwan, General Manager at Roche, contributed with the pharma industry perspective.

 

Photo of the expo area during EHiN 2019.

The crowded crowded expo area during EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Networking in the expo area

The expo area is the heart and soul of EHiN. This is where public and private organizations can meet under informal circumstances and create new partnerships. These collaborations are what lead to knowledge sharing and that digital solutions can be implemented in the health sector.

This year, a pharma company was present in the expo area for the very first time, our member Roche. Roche are investing more in genetic testing and personalized medicines than ever before. But why are genetic tests important for cancer treatments? Cancer is more than a disease, it is about the composition of DNA, RNA and proteins – and how these relate to one another. Every cancer tumor is therefore unique, but by finding out more about the genetic sequence, one can develop personalized treatments that target the tumor effectively.

In the expo area, a variety of start-ups, IT companies, health clusters, public organisations and academic institutions were also present. For two days, the area was buzzing with interactions, meetings and talks.

We hope you carry on the conversations and that we see all of you again next year!

 

Jónas Einarsson, CEO of Radforsk, and Elisabeth Kirkeng Andersen, Communications Manager at Radforsk, invite guests on the podcast Radium to discuss recent developments in the Norwegian oncology field.

100 episodes of cancer research & development

Jonas Einarsson and Elisabeth Kirkeng Andersen, from RADFORSK, are the two people behind the podcast Radium.

From a relatively modest podcast to packed live shows at Arendalsuka, Radium has in three years grown into a leading cancer podcast in Norway.

Radium is a weekly podcast about Norwegian cutting-edge cancer research and development, produced by the evergreen investment fund Radforsk. Radforsk has 15 companies in its portfolio, of which five are on the stock market and 10 are also members of Oslo Cancer Cluster. Elisabeth Kirkeng Andersen, Communications Manager, and Jónas Einarsson, CEO of Radforsk, bring guests on the show to discuss recent development in the oncology field and news from the portfolio companies.

“Three years ago, Elisabeth came to me and said ‘Now, we are going to do something new – we will make a podcast’. I replied ‘That’s great! But what is a podcast?’” Einarsson said.

Andersen then took the first steps and employed students from the media program at Ullern Upper Secondary School to help with sound production.

 

Interested investors

Andersen and Einarsson quickly noticed there is great interest in the podcast, especially from investors and shareholders. They want to stay updated about Norwegian cancer research, a relatively new but growing sector. They often send in questions, which Andersen and Einarsson ask the guests in the studio.

“We try to simplify things. It is easier to hear it explained by someone from a company, than to read a difficult press release,” Andersen said.

“I think the best episodes are when we get a good dialogue with the CEOs of the companies, especially when things get a little heated. I try to lure them out on the thin ice to make them tell us more,” Einarsson said.

The popular podcast format has exploded in recent years, giving people access to accessible conversations that they can listen to whenever they want.

“There is no strict direction. We say that we are just going to have a conversation and then we talk for an hour or more,“ Einarsson said. “We have a down-to-earth style, but Elisabeth will pull us back if the guests or I dive too deep into details.”

 

Affecting health policies

Radium has also had several events with live streaming. At Arendalsuka this year, the premises were fully packed with eager listeners at both of their live shows.

“At Arendal, we try to have podcasts with others in the cancer field and aim to be more political. We think it has worked very well, because we can reach out to even more people when we stream the event,” Elisabeth said.

“I think the podcast will interest people working in the health industry and health politics too,” Einarsson said. “For example, the health minister was a guest for an entire hour, talking about current challenges.”

 

Best of Norwegian research

Radium regularly invites famous names from the Norwegian research community too. Steinar Aamdal, a prominent researcher in cancer immunotherapies has been a guest. Another cancer expert, Håvard Danielsen, who works on the DoMore project at Oslo University Hospital, has also talked on the podcast.

Øyvind Bruland and Roy Larsen, the serial entrepreneurs who started Algeta, Nordic Nanovector and OncoInvent, also visited the show.

Soon, Radium will host Kristian Berg, the researcher behind PCI Biotech’s technology: photochemical internalisation technology.

“I believe people think it is very interesting to, through the podcast, meet the people who actually have researched and developed the treatments,” Einarsson said.

 

For the patients

Einarsson and Andersen have also noticed that cancer patients or their family members listen to the podcast to hear about what is happening in the field.

“It is important to communicate that we do this for the patients. An important driving force is that we wish to contribute to developing better treatments for patients,” said Andersen.

“Every time the survival rate increases, it means one patient gets to live longer – and perhaps that is because of a treatment we have helped to develop,” said Einarsson. “To be a part of the journey with immunotherapy over the last 20 years, for an old doctor like me, is absolutely fantastic.”

 

Listen and download Radium:

 

Send in your ideas for guests and topics directly to Radium.

 

Episode 100 was recorded at Kulturhuset in Oslo, with several interesting guests, a friendly atmosphere and, delicious food and beverages. Stay tuned for upcoming live events via Radforsk’s Facebook page!

 

Sign up to OCC monthly newsletter

Ketil Widerberg, General Manager of Oslo Cancer Cluster, looks forward to taking part in EHiN - Norway's national e-health conference - next week.

Machine learning improves cancer research

Ketil Widerberg, general manager, Oslo Cancer Cluster.

This interview was first published on EHiN’s official website. Scroll down to read it in Norwegian.

 

EHiN is important in order to realise the opportunities that digital technologies can give patients, society and industry.

Ketil Widerberg is the General Manager of Oslo Cancer Cluster, which is a co-owner of EHiN 2019. We asked Ketil Widerberg a few questions about why digitalization and EHiN are important for cancer research.

–Can you describe in short what Oslo Cancer Cluster is and what you do?

Oslo Cancer Cluster is a non-profit member organization that gathers public and private players. The goal is to transform cancer research into treatments that change patients’ lives. We are a National Centre of Expertise (NCE).

–You are now co-owners of EHiN. What do you wish to achieve with that?

Oslo Cancer Cluster has the last ten years developed and established well-known meeting places (such as Cancer Crosslinks) by combining different disciplines. In the future, digitalisation and precision medicine (e-health) will be a central area in cancer research.

EHiN is a perfect match in this area. EHiN will be an important platform in order to realise the opportunities that digital technologies can give patients, society and industry.

–What do you think AI will mean for cancer research?

Today’s breakthroughs in treatment will often only work on 3 out of 10 patients. Artificial intelligence will change medicine in two ways. First, how we understand cancer. In the same way as the microscope gave us the ability to see things on a cellular level, data will now help us to see patterns we never would have discovered.

Second, how we treat cancer will change. We have to be ready to give the right treatment to the right patient at the right time. One way of giving individualised treatments is to recognize patterns – patterns that show how a patient will react from a treatment.

After that, you can see in larger groups of people if this pattern is repeated. Then, you select the patients that have a positive response to the treatment. This will, to begin with, not be a perfect method, but if you repeat this process, the modern machine learning systems can make it better and better.

–We know that health research takes time. How can digital solutions improve this?

Digitalisation will accelerate the development of new treatments in several areas. One area is clinical studies. Digital technology can help to adjust studies according to patient responses and enable digital control arms that shorten years off the developmental period. Digital solutions can make clinical trials more flexible and efficient, by reducing the administrative burden on companies and at the same time make it simpler for patients to enroll.

Gradually, as the volume and speed of the data increases, we have the opportunity to use new machine learning algorithms – such as deep learning. The algorithms can identify digital biomarkers that will give faster and better development of new treatments.

–Why is EHiN an important meeting place for Norway?

EHiN is relevant for Oslo Cancer Cluster because the IT revolution is about to hit the oncology field. Personalized treatments, genomics and the use of health data will soon develop into one of the most important areas of “e-health”. This is also an area that is of great interest for the IT industry, for data storing, data analysis, machine learning, pattern recognition, connecting different data sources, and so on.

At the same time, the technology will also impact the academic world and the pharmaceutical part of the health sector, and contribute to set the rules for the whole value chain in health processes in decades to come. EHiN wishes, in collaboration with Oslo Cancer Cluster, to build Norway as an important international hub in the area of e-health – by gathering and showcasing the different activities at the conference and in other settings.

 

–Selvlærende datasystemer gjør kreftforskning stadig bedre

EHiN er ifølge Ketil Widerberg viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet. Widerberg er daglig leder for Oslo Cancer Cluster, som i høst 2018 gikk inn som medeier av EHiN.

Vi stilte Ketil Widerberg noen spørsmål om hvorfor digitalisering og EHiN er viktig for kreftforskning.

–Kan du beskrive kort hva OCC er og hva dere gjør?

OCC er en non-profit medlemsorganisasjon som samler offentlige og private aktører. Målet er å gjøre kreftforskning til produkter som endrer pasienters liv. Vi er et NCE (National Centre of Expertise).

Dere har blitt med på EHiN. Hva ønsker OCC å oppnå med det?

Oslo Cancer Cluster har de siste 10 årene utviklet og etablert anerkjente møteplasser (som Cancer Crosslinks) ved å kombinere forskjellige fag-grener. Fremover vil digitalisering sammen med presisjonsmedisin (e-Helse) være et sentralt område innenfor kreft.

EHiN er en perfekt match for dette området. I tråd med OCC sin strategi vil EHiN være viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet.

–Hva tror du AI kan bety for forskning rundt kreft?

Dagens behandlingsgjennombrudd vil ofte bare virke på 3 av 10 pasienter. Kunstig intelligens vil endre medisin på to måter. Hvordan vi forstår kreft. På samme måte som mikroskopet ga oss evnen til å se helt ned på cellenivå, vil data nå hjelpe oss til å se mønster vi aldri ellers ville oppdaget.

Hvordan vi behandler kreft vil forandre seg. Vi må derfor klare å gi den rette behandlingen til den rette pasienten til rett tid. En måte å kunne gi individbasert behandling er å gjenkjenne mønster. Mønster som viser hvordan en pasient vil reagere på en behandling.

Deretter se i større grupper mennesker om dette mønsteret gjentar seg. Da kan man plukke ut de pasientene med positivt utbytte av behandlingen. Dette vil i begynnelsen ikke være en perfekt metode, men hvis man gjentar denne prosessen, kan moderne selvlærende datasystemer gjøre den stadig bedre.

–Vi vet at helseforskning tar lang tid. Hvordan kan digitale løsninger bidra på dette?

Digitalisering vil akselerere utviklingen av ny behandling på flere områder. Ett område er kliniske studier. Digital teknologi kan gjøre at studier justeres etter respons og muliggjøre digitale kontrollarmer som korter år av utviklingstiden. Kliniske forsøk kan bli fleksible og effektive ved å redusere administrative byrder på firmaer, og samtidig gjøre det enklere for pasientene.

Etter hvert som volumet og hastigheten på data øker, har vi mulighet til å bruke nye maskinlæringsalgoritmer – som dyplæring. Det kan identifisere digitale biomarkører som vil kunne gi raskere og bedre utvikling av ny pasientbehandling.

–Hvorfor er EHiN en viktig møteplass for Norge?

EHiN er faglig relevant for OCC fordi IT-revolusjonen er i ferd med å slå inn på onkologi feltet. Persontilpasset medisin/behandling, genetikk og bruk av helsedata vil snart utvikle seg til et av de viktigste områdene innen “e-helse”. Dette er også et område som er av stor interesse for IT-bransjen (datalagring, analyse, machine learning, mønstergjenkjenning, kobling av ulike datakilder osv.).

Samtidig vil teknologien også få konsekvenser for den akademiske verden, samt den farmasøytiske delen av helsesektoren, og bidra med å legge rammene for hele verdikjeden i helseprosessene i tiårene fremover. EHiN ønsker, i samarbeid med OCC, å bygge Norge som en viktig internasjonal hub på området e-Helse ved å samle og vise frem ulike aktiviteter på konferansen og også i andre sammenhenger.

 

Sign up to OCC monthly newsletter

The panelists during our breakfast meeting about precision medicine in Arendal: (from left to right) Audun Hågå, Director (Norwegian Medicines Agency), Per Morten Sandset, vice principal for Innovation (University of Oslo), Tuva Moflag (Ap), Marianne Synnes (H), Geir Jørgen Bekkevold (KrF).

Together for precision medicine

Debate from Arendalsuka

During Arendalsuka 2019, we arranged a breakfast meeting on the development of cancer treatments of the future, together with LMI and Kreftforeningen.

Arendalsuka has become an important arena for those who want to improve aspects of Norwegian society. We were there this year to meet key players to accelerate the development of cancer treatments.

Our main event of the week was a collaboration with Legemiddelindustrien (LMI) and The Norwegian Cancer Society (Kreftforeningen). We wanted to highlight the cancer treatments of the future and whether Norway is equipped to keep up with the rapid developments in precision medicine. (Read a summary of the event in Norwegian on LMI’s website)

First speaker, Line Walen (LMI), presented the problems with the traditional system for approving new treatments in face of precision medicine.

The second presenter, Kjetil Taskén (Oslo University Hospital), introduced their new plan at Oslo University Hospital to implement precision medicine.

Then, Steinar Aamdal (University of Oslo) talked about what we can learn from Denmark when implementing precision medicine.

Lastly, Ole Aleksander Opdalshei (Norwegian Cancer Society) highlighted a new proposal for legislation from the government.

The exciting program was followed by a lively discussion between both politicians and cancer experts.

There was general agreement in the panel that developments are not happening fast enough and that the Norwegian health infrastructure and system for approving new treatments is not prepared to handle precision medicine, even though cancer patients need it immediately.

The panelists proposed some possible solutions:

  • Better collaboration and public-private partnerships between the health industry and the public health sector.
  • More resources to improve the infrastructure for clinical trials, with both staff, equipment and financial incentives.
  • Better use of the Norwegian health data registries.

After the debate, we interviewed a few of the participants and attendees. We asked: which concrete measures are needed for Norway to get going with precision medicine?

Watch the six-minute video below (in Norwegian) to find out what they said. (Turn up the sound)

 

Did you miss the meeting? View the whole video below on YouTube (in Norwegian).

 

Full list of participants:

  • Wenche Gerhardsen, Head of Communications, Oslo Cancer Cluster (Moderator)
  • Line Walen, Senior Adviser, LMI
  • Kjetil Taskén, director Institute for Cancer Research, Oslo University Hospital
  • Steinar Aamdal, professor emeritus, University of Oslo
  • Ole Aleksander Opdalshei, assisting general secretary, The Norwegian Cancer Society
  • Marianne Synnes (H), politician
  • Geir Jørgen Bekkevold (KrF), politician
  • Tuva Moflag (Ap), politician
  • Per Morten Sandset, vice principal for Innovation, University of Oslo
  • Audun Hågå, Director Norwegian Medicines Agency

 

Thank you to all participants and attendees!

The next event in this meeting series will take place in Oslo in the beginning of next year. More information will be posted closer to the event.

We hope to see you again!

 

Organisers:

 

 

 

 

 

Sponsors:

 

 

 

 

 

Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity are happy to combine forces with NEC Corporation to strengthen their machine learning software in the fight against cancer.

Norwegian AI-based cancer research gets a boost

Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity

The Japanese tech giant NEC Corporation has acquired OncoImmunity AS, a Norwegian bioinformatics company that develops machine learning software to fight cancer.

This week, Oslo Cancer Cluster member OncoImmunity AS was bought by the Japanese IT and network company NEC Corporation. The company is now a subsidiary of NEC and operates under the name of NEC OncoImmunity AS. NEC has recently launched an artificial intelligence driven drug discovery business and stated in a press release that NEC OncoImmunity AS will be integral in developing NEC’s immunotherapy pipeline.

 

AI meets precision medicine

One of the great challenges when treating cancer today is to identify the right treatment for the right patient. Each cancer tumour is unique, and every patient has their own biological markers. So, how can doctors predict which therapy will work on which patient?

NEC OncoImmunity AS develops software to identify neoantigen targets for truly personalized cancer vaccines, cell therapies and optimal patient selection for cancer immunotherapy clinical trials. Neoantigen targets are parts of a protein that are unique to a patient’s specific tumor, and can be presented by the tumor to trigger the patient’s immune system to attack and potentially eradicate the tumor.

“The exciting field of personalized medicine is moving fast and becoming increasingly competitive. The synergy with NEC Corporation will allow us to make our technology even more accurate and competitive, as we can leverage NEC’s expertise in AI and software development and enable OI to deploy our technology on scale in the clinic due to their expertise in networks and cyber security,” said Dr. Trevor Clancy, Chief Scientific Officer and Co-founder.

“This acquisition gives us the opportunity to be a world leading player in this field and serve our Norwegian and international clients with improved and secure prediction technology in the medium to long term,” said Dr. Richard Stratford, Chief Executive Officer and Co-founder.

 

The rise to success

OncoImmunity was founded in 2014 and has been a member of Oslo Cancer Cluster since the early days of the start up. The co-founders Dr. Trevor Clancy and Dr. Richard Stratford said the cluster has been instrumental to their success and thanks the team for their advice and support from the very beginning of their journey:

“It is crucial with a technology like ours that we interact with commercial companies active in drug development, research, clinical projects, investors and other partners. Oslo Cancer Cluster is the perfect ecosystem in that regard as it provides the company with the networking and partnering opportunities that in effect support our science, technological and commercial developments.”

Mr. Anders Tuv, Investment Director of Radforsk, has been responsible for managing the sales process in relation to the Japanese group NEC Corporation on behalf of the shareholders. The shareholders are happy with the transaction and the value creation that was realised through it. Mr. Tuv commented:

“It is a huge recognition that such a global player as NEC sees the value of the product and expertise that have been developed in OncoImmunity AS and buys the company to strengthen their own investments in and development of AI-driven cancer treatment. It is also a recognition of what Norway is achieving in the field of cancer research, and it shows that Radforsk has what it takes to develop early-phase companies into significant global positions within the digital/AI-driven part of the industry. We believe that NEC will be a good owner going forward, and we wish the enterprise the very best in its future development.”

 

Medicine is becoming digital

NEC OncoImmunity AS is now positioned to become a front runner in the design of personalized immunotherapy driven by artificial intelligence. Dr. Trevor Clancy said that NEC and OncoImmunity share the common vision that medicine is becoming increasingly digital and that AI will play a key role in shaping future drug development:

“Both organizations believe strongly that personalized cancer immunotherapy will bring curative power to cancer patients, and this commitment from NEC is highlighted by the recent launch of their drug discovery business. The acquisition now means that both companies can execute on their vision and be a powerful force internationally to deliver true personalized medicine driven by AI.”

 

For more information, please visit the official websites of NEC Corporations and NEC OncoImmunity AS 

 

Sign up to OCC newsletter

The High Throughput Screening Lab at SINTEF. Photo: Thor Nielsen / SINTEF

SINTEF to develop methods in immuno-oncology

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

SINTEF and Catapult Life Science are looking for new partners to develop methodology for cancer immunotherapy.

“We want to develop methods within immunotherapy, because this is currently the most successful strategy for improving cancer treatments and one of the main directions in modern medicine,” says Einar Sulheim, Research Scientist at SINTEF.

The Norwegian research organization SINTEF is an Oslo Cancer Cluster member with extensive knowledge in characterisation, analysis, drug discovery and development of conventional drugs.

The new project on methodology for cancer immunotherapy recently started in April 2019 and is a collaboration with Catapult Life Science, a new Oslo Cancer Cluster member. The aim is to help academic groups and companies develop their immunotherapy drug candidates and ideas.

Help cancer patients

Ultimately, the main aim is of course that the project will benefit cancer patients. Immunotherapy has shown to both increase life expectancy and create long term survivors in patient groups with very poor prognosis.

“We hope that this project can help streamline the development and production of immunotherapeutic drugs and help cancer patients by helping drug candidates through the stages before clinical trials.” Einar Sulheim, Research Scientist at SINTEF

 

Develop methodology

The project is a SINTEF initiative spending NOK 12,5 million from 2019 to 2023. SINTEF wants to develop methodology and adapt technology in high throughput screening to help develop products for cancer immunotherapy. This will include in vitro high throughput screening of drug effect in both primary cells and cell lines, animal models, pathology, and production of therapeutic cells and antibodies.

 

High throughput screening is the use of robotic liquid handling systems (automatic pipettes) to perform experiments. This makes it possible not only to handle small volumes and sample sizes with precision, but also to run wide screens with thousands of wells where drug combinations and concentrations can be tested in a variety of cells.

 

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

The Cell Lab at SINTEF. Photo: Thor Nielsen / SINTEF

 

Bridging the gap

Catapult Life Science is a centre established to bridge the gap between the lab and the industry by providing infrastructure, equipment and expertise for product development and industrialisation in Norway. Their aim is to stimulate growth in the Norwegian economy by enabling a profitable health industry.

“In this project, our role will be to assess the industrial relevance of the new technologies developed, for instance by evaluating analytical methods used for various phases of drug development.” Astrid Hilde Myrset, CEO Catapult Life Science

A new product could for example be produced for testing in clinical studies according to regulatory requirements at Catapult, once the centre achieves its manufacturing license next year.

“If a new method is intended for use in quality control of a new regulatory drug, Catapult’s role can be to validate the method according to the regulatory requirements” Myrset adds. 

SINTEF and Catapult Life Science are now looking for partners.

Looking for new partners

Einar Sulheim sums up the ideal partners for this project:

“We are interested in partners developing cancer immunotherapies that see challenges in their experimental setups in terms of magnitude, standardization or facilities. Through this project, SINTEF can contribute with internal funding to develop methods that suit their purpose.”

 

Interested in this project?

Anette Weyergang demonstrated the PCI technology to the Norwegian Prime Minister Erna Solberg during her visit to Oslo Cancer Cluster Innovation Park.

Radforsk to invest NOK 4.5 million in cancer research

Radforsk, the Radium Hospital Research Foundation, a partner of Oslo Cancer Cluster, is awarding several million Norwegian kroner to new research that fights cancer with light.

Radforsk is an evergreen investor focusing on companies that develop cancer treatment. Since its inception in 1986, Radforsk has allocated NOK 200 million of its profit back into cancer research at Oslo University Hospital. This year, four researchers will be awarded a total of NOK 4.5 million. One of them is Anette Weyergang, who will receive NOK 3.75 million over a three-year period.

“I’m so happy for this grant. As researchers, we have to find funding for our own projects. I didn’t have any funding for the project I have now applied and been granted funds for,” says Anette Weyergang.

Anette Weyergang is one of the researchers who has received funding from Radforsk.

Anette Weyergang is a project group manager and senior researcher in a research group led by Kristian Berg. The group conducts research in the field of photodynamic therapy (PDT) and photochemical internalisation (PCI). Radforsk’s portfolio company and Oslo Cancer Cluster member PCI Biotech is based on this group’s research.

What is PDT / PCI? Cancer research in the field of photodynamic therapy and photochemical internalisation studies the use of light in direct cancer treatment in combination with drugs, or to deliver drugs that can treat cancer cells or organs affected by cancer.

 

Weyergang is the first researcher ever to receive several million kroner over the course of several years from Radforsk.

“We have donated a total of NOK 200 million to cancer research at Oslo University Hospital, of which NOK 25 million have gone to research in PDT/PCI. We have previously awarded smaller amounts to several researchers, but we now want to use some of our funds to focus on projects we believe in,” says Jónas Einarsson, CEO of Radforsk.

By the deadline on 15 February 2019, Radforsk received a total of eight applications, which were then assessed by external experts.

 

The new research focuses on how to use light to release the cancer drugs more efficiently inside the cancer cells.

 

New use of PCI technology

PCI is a technology for delivering drugs and other molecules into the cancer cells and then releasing them by means of light. This allows for a targeted cancer treatment with fewer side effects for patients.

Weyergang will use the funds from Radforsk to research whether PCI technology can be used to make targeted cancer treatment even more precise.

“The project aims to find a method for delivering antibodies to cancer cells using PCI technology. This has never been done before, and if we succeed, it can open up brand new possibilities for using this technology,” says Weyergang.

Initially, she will focus on glioblastoma, which is the most serious form of brain cancer. Glioblastoma is resistant to both chemotherapy and radiotherapy, and has a very high mortality rate.

“This is translational research, so human trials are still a long way off. We will now use both glioblastoma cell lines and animal experimentation to test our hypothesis. We do this to establish what is called a “proof of concept”, which we need to move on to clinical testing,” says Weyergang.

 

The other researchers who have received funding for PDT/PCI research from Radforsk in 2019 are:

  • Kristian Berg and Henry Hirschberg Beckman: NOK 207,500
  • Qian Peng: NOK 300,000
  • Mpuldy Sioud: NOK 300,000

 

What is Radforsk?

  • Since its formation in 1986, Radforsk has generated NOK 600 million in fund assets and channelled NOK 200 million to cancer research, based on a loan of NOK 1 million in equity back in 1986.
  • During this period, NOK 200 million have found its way back to the researchers whose ideas Radforsk has helped to commercialise.
  • NOK 25 million have gone to research in photodynamic therapy (PDT) and photochemical internalisation (PCI). In total, NOK 40 million will be awarded to this research.

 

Sign up to OCC newsletter

From the left: Hakan Köksal, PhD student, and Pierre Dillard, scientist, are splitting cells in the lab at Oslo Cancer Cluster Incubator. They are two of the scientists behind the new Norwegian study described in this article.

The first Norwegian CAR

Made in Oslo by a team of researchers from Oslo University Hospital, the first ever Norwegian CAR T cell is now a fact. A potential treatment based on this result depends on a clinical study.

A new Norwegian study shows a genetically modified cell-line with great potential as treatment for patients that are not responding to established CAR T cell therapies. This form of immuno-therapy for cancer patients has recently been approved in many countries, including Norway.

“We hope that the Norwegian authorities will be interested in transforming this research into benefits for Norwegian patients.” Hakan Köksal

 

 

What is a CAR?

Before we go into the research, let us clarify an essential question. What is a CAR? Chimeric antigen receptor (CAR) T cells are T cells that have been genetically engineered to produce an artificialreceptorwhich binds a protein on cancer cells.

How does this work? T cells naturally recognize threats to the body using their T cell receptors, but cancer cells can lock onto those receptors and deactivate them. The new CAR T cell therapies are in fact genetic manipulations used to lure a T cell to make it kill cancer cells. This is what a CAR is doing, indeed CARs replace the natural T-cell receptors in any T cells and give them the power to recognize the defined target – the cancer cell.

CAR-T cell therapy is used as cancer therapy for patients with B-cell malignancies that do not respond to other treatments.

 A severe consequence of using CAR T cell therapy is that it effectively wipes out all the B cells in the patient’s body — not only the cancerous leukemia cells or the lymphoma, but the healthy B cells as well. Since B-cells are an important part of the immune system, it goes without saying that the treatment comes with risks.

Micrograph of actin cytoskeleton of T-cells. The cell is about 10µm in diameter. Photo: Pierre Dillard

Micrograph of actin cytoskeleton of T-cells. The cell is about 10µm in diameter. Photo: Pierre Dillard

T cells: T lymphocytes (T cells) have the capacity to kill cancer cells. These T cells are a subtype of white blood cells and play a central role in cell-mediated immunity.

 

Made in Norway  

Now let us move on to the new research. This particular construct was designed from an antibody that was isolated in the 1980’s at the Radium Hospital in Oslo.

The CAR construct was designed, manufactured and validated in two laboratories in the Radium Hospital campus. One is the laboratory of Immunomonitoring and Translational Research of the Department of Cellular Therapy, OUH, located at the Oslo Cancer Cluster Incubator. This laboratory is led by Else Marit Inderberg and Sébastien Wälchli. The other is the laboratory of the Lymphoma biology group of the Department of Cancer Immunology, Institute for Cancer Research, OUH. This laboratory is led by June Helen Myklebust and Erlend B. Smeland.

“Even the mouse was Norwegian.” Hakan Köksal

The pre-clinical work that made the Norwegian CAR was completed in March 2019.

In the research paper “Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma”, published in the journal Blood Advances, the research team tests an artificially produced construct calledCD37CAR and finds that it is especially promising for patients suffering from multiple types of B-cell lymphoma. This may be treated successfully with novel cell-based therapy.

It now needs to be approved by the authorities and gain financial support to be further tested in a clinical study in order to benefit Norwegian patients.

 

The first CAR-therapy

CAR-based therapy gained full attention when the common B-cell marker CD19 was targeted and made the basis for the CAR T cell therapy known as Kymriah (tisagenlecleucel) from Novartis.

It quickly became known as the first gene therapy allowed in the US when it was approved by the US Food and Drug Administration (FDA) just last year, in 2018, to treat certain children and young adults with B-cell acute lymphoblastic leukemia. Shortly after, the European Commission also approved this CAR T cell therapy for young European patients. The Norwegian Medicines Agency soon followed and approved the treatment in Norway.

“CD19CAR was the first CAR construct ever developed, but nowadays more and more limitations to this treatment have emerged. The development of new CAR strategies targeting different antigens has become a growing need.” Dr. Pierre Dillard

 

Not effective for all

Although the CD19CAR T cell therapy has shown impressive clinical responses in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma, not all patients respond to this CAR T treatment.

In fact, patients can become resistant to CD19CAR. Such relapse has been observed in roughly 30% of the studies of this treatment. Thus, alternative B-cell targets need to be discovered and evaluated. CD37 is one of them.

“You could target any antigen to get a new CAR, but it is always a matter of safety and specificity.” Hakan Köksal said.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

 

The Norwegian plan B

The novel Norwegian CAR T is the perfect option B to the CD19CAR.

 “The more ammunition we have against the tumours, the more likely we are to get better response rates in the patients.” Hakan Köksal

The CD37CAR T cells tested in mouse models in this Norwegian study, show great potential as treatment for patients that are not responding to the established CD19CAR-treatment.

“More and more labs are studying the possibility of using CAR therapy as combination, i.e. CAR treatments targeting different antigens. Such a strategy will significantly lower the probability of patients relapsing.” Dr. Pierre Dillard said.

The CD37CAR still needs to be tested clinically. The scientists at OUS underline the importance of keeping the developed CD37CAR in Norway and having it tested in a clinical trial.

It is a point to keep it here and potentially save patients here. We would like to see the first CD37CAR clinical study here in Norway.” Hakan Köksal

 

More from the Translational Research Lab of the Department of Cellular Therapy, OUH: