From left to right: Bente Prestegård, Project Manager at Oslo Cancer Cluster, Henrikke Thrane-Steen Røkke, student, Peder Nerland Hellesylt, student, and Ragni Fet, Teacher at Ullern Upper Secondary School are happy to see the launch of the researcher program.

Educating the cancer researchers of tomorrow

Ullern Upper Secondary School and Oslo Cancer Cluster are paving the way for students to become the researchers of the future.

A new program has been launched this autumn for Ullern students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. It is the only researcher program for upper secondary school in Norway.

“The researcher program at Ullern will be a place where students are encouraged and guided to become independent students, with a need to explore, an understanding of methods and a desire to learn,” said Ragni Fet, teacher at Ullern Upper Secondary School. “They will learn to gather good and reliable information, they will do research in practice through varied experiments, and they will gain real insight into job opportunities in the research industry.”

The program is a joint initiative between Oslo Cancer Cluster and Ullern Upper Secondary School, who have been collaborating since 2009. This has offered students in the natural sciences, health, media and electricity special opportunities to learn science subjects outside a traditional classroom setting.

“The purpose of launching a researcher program at Ullern Upper Secondary School is to recruit the researchers, scientists and entrepreneurs of the future,” said Bente Prestegård, Project Manager at Oslo Cancer Cluster. “We know that these jobs are needed, and we want to teach students about what it means to be a researcher or entrepreneur. With better insight into the professions, the students will be able to make a safe career choice.”

 

With a passion for science

About 30 students have already begun this unique program at Ullern Upper Secondary School. One of them is Henrikke Thrane-Steen Røkke.

“I chose the researcher program because I personally enjoy studying the natural sciences and innovation, and I wanted more of those subjects. I had entrepreneurship as an elective at secondary school and thought it was a lot of fun. I think it seemed very exciting and wanted to learn more,” Henrikke explained. “I hope I can gain insight into what it is like to work as a researcher. I hope we can see and experience a lot of it in practice and to work in depth with some subjects in certain areas.”

The program is especially well suited for students with an interest in the natural sciences, such as Peder Nerland Hellesylt, who also recently begun the program.

“I applied to this program because I have always had an interest for the natural sciences and mathematics,” Peder said. ”I think this program is very interesting because we aren’t just sitting and writing, but get practical tasks too, for example experiments.”

 

Mixing theory with practice

Ullern Upper Secondary School is located right next to The Norwegian Radium Hospital, The Institute for Cancer Research, The Norwegian Cancer Registry and the Oslo Cancer Cluster Incubator, with its over 30 big and small companies. The students are therefore never far from world class researchers. This offers the unique opportunity to take advantage of the co-localisation and use mentors from the research milieu in the teaching.

“Through the collaboration with Oslo Cancer Cluster, we will obtain external lecturers to the class rooms; bring the students to multiple, exciting innovation companies and laboratories; and the students will attempt real research experiments themselves. We are raising the level and are ambitious for the sake of the students,” Ragni Fet said.

 

Sign up to OCC newsletter

From left to right: Gaspar Taroncher-Oldenburg, Marko Kuisma, Jørn Skibsted Jakobsen, Carl Borrebaeck, Kristian Pietras, Kaisa Helminen and Mark Swindells engaging in the lively panel discussion.

Forward-looking session on cancer precision medicine

Emerging therapies, digital solutions and AI were central topics when international experts met during the oncology session at the Nordic Life Science Days 2019.

Oslo Cancer Cluster hosted the session on oncology titled “Cancer precision medicine: State-of-the-art and future directions” at the Nordic Life Science Days this year. The session covered recent advances in cancer immunotherapy and cell- and gene therapies. International experts met to discuss how big data, artificial intelligence and digital solutions are changing drug development, diagnostics and patient care.

 

AI revolutionizing cancer research

Dr. Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells, PhD, COO Exscientia, presented how artificial intelligence is changing and driving drug discovery now.

“On average 2 500 compounds need to be synthesized and tested to develop a candidate molecule for clinical trials. We want to apply AI to this artisan area of drug discovery. By reducing the amount of compounds synthesized and tested, we will reduce the overall cost and time to get drugs to market,” Swindells said.

This is a fast moving area and one of the examples of technical innovation Swindells gave was Exscientia’s Active Learning algorithms, which have been benchmarked to work as well as – and in some cases better than – the most successful humans.

In the area of precision oncology, Swindells said: “We are particularly interested in the acquisition of resistance in oncology as an area where our technology could be applied.”

 

Kaisa Helminen, CEO Aiforia, focussed on how the use of artificial intelligence can make image analysis more accurate and efficient.

Dr. Kaisa Helminen on artificial intelligence and image analysis.

Kaisa Helminen on artificial intelligence and image analysis.

“Due to the ageing population, more samples need to be analysed and many countries suffer from serious shortage of pathologists. Many patients are left waiting for their diagnosis and treatment. Manual, visual image analysis is slow and highly subjective. There is a risk for misdiagnosis, which can be dramatic for the patient and costly for the healthcare system.”

Aiforia has built an AI platform that supports medical experts in diagnostics.

“For the first time we are bringing AI tools for doctors’ use, so they can easily create their own AI algorithms,” Helminen explained. “Instead of visually estimating something from samples, we bring accurate, numerical information. AI algorithms are consistent from day to day, week to week, removing the human error component,”

We are bringing AI tools for doctors’ use.

 

Marko Kuisma, Chief Commercial Officer at Kaiku Health, then presented a new digital platform for better patient monitoring, using machine learning tools.

Marko Kuisma on digital tools for better patient monitoring.

Scientific evidence demonstrates that patients who use a digital symptom monitoring solution have an overall survival benefit, experience improved quality of life and go through less visits to the emergency room and hospitalisations.

“The traditional interventions that clinicians make are reactive and come with a delay,” Kuisma explained. “With digital symptom monitoring, interventions are still reactive, but more timely, because you can detect the symptoms early on. When applying machine learning, we make that monitoring proactive and predictive, taking action before symptoms and adverse effects develop.”

“… taking action before symptoms and adverse effects develop.”

 

Identifying gene mutations

Jørn Skibsted Jakobsen Md. Ph.D.,Vice president Science and Medicine TA Urology/Uro-Oncology, Global Clinical Research and Development, Ferring Pharmaceuticals, introduced emerging gene therapies to treat non muscle invasive bladder cancer (NMIBC) bladder cancer.

Jørn Skibsted Jakobsen on a radical new gene therapy.

Jørn Skibsted Jakobsen on a radical new gene therapy.

If a NMIBIC patient doesn’t respond to BCG (a type of immunotherapy drug), a cystectomy is still considered the gold standard treatment. This involves surgically removing all or parts of the urinary bladder, creation of a urinary diversion using a piece of the small intestine and leads to a significantly decreased quality of life for the patient.

Jakobsen introduced a new gene therapy to treat NMIBC patients that are unresponsive to BCG treatment.

“Early research suggests mutations in the surrounding tissue of the tumour potentially predict the subsequent recurrence of the disease,” Jakobsen said. “What if we were able to identify those mutations? And then create a personalised gene-based antibody directed at identified mutations. You could potentially treat patients before the recurring disease.”

“You could potentially treat patients before the recurring disease …”

 

Novel targets and pathways

Carl Borrebaeck, Professor, Lund University, and Kristian Pietras, Professor of Molecular Medicine, Lund University presented L2CancerBridge, a collaboration between the Swiss Centre of Lausanne and Lund University. They are exploring a new model for translational research in breast cancer and tumour immunology.

Carl Borrebaeck introduced L2CancerBridge.

Carl Borrebaeck introduced L2CancerBridge.

The tumor immunology team in Lausanne is focused on identifying novel targets on immunoregulatory cells as T cells and dendritic cells, with the goal of identifying new targets for CAR-T cells. The breast cancer team is focused on studies of tumour cells and their microenvironment with the goal to identify signalling pathways.

“We have been able to find signalling pathways between malignant cells and connective tissue,” Pietras said.

These pathways are crucial for basal-like breast cancer, the most aggressive breast cancer subtype, and block the development of resistance to endocrine therapy. Blocking them allows the use of effective endocrine therapies in cancers that previously did not have any targeted treatment options.

 

Gaspar Taroncher-Oldenburg, PhD; Editor-at-Large, Nature Publishing Group, moderated the session for the second year in a row.

“I have been impressed by how much thought both co-hosts of the event—Jutta Heix from the Oslo Cancer Cluster and Carl Borrebaeck from Lund University—put into weaving together a compelling story that is timely and relevant, both locally and globally.” Taroncher-Oldenburg said.

“Of course, much of the credit for the session being successful goes to the panelists, who again this year captured the audience’s attention through a combination of intriguing presentations and a dynamic roundtable discussion that broadly illustrated different aspects–present and future—of precision medicine in oncology.”

“A compelling story that is timely and relevant, both locally and globally.”

Norway for life science

The biggest key players from the life science industry in Norway came together in Malmö with a common goal: to promote Norwegian life science and build Nordic collaboration.

The life science industry in Norway is booming and collaboration across Nordic borders is of increasing importance. That is why Oslo Cancer Cluster arranged the stand “Norway for Life Science” this year at the Nordic Life Science Days in Malmö.

Among the participants of the stand were governmental institutions, cluster organisations, private companies and academic institutions.

 

Promoting collaboration

On Wednesday, a delegation from the Norwegian Embassy in Sweden attended for an informal meet and greet with the Norwegian life science milieu. This was an excellent opportunity to share knowledge about Nordic cooperation and to strengthen joint activities within the life sciences.

See the video with Kirsten Hammelbo, Minister / Deputy Head of Mission, Norwegian Embassy below.

 

Standing together

The participants of the stand were altogether positive about the initiative and agreed it was a constructive platform to build new relationships. We asked some of the participants the same question: Why is it important for you to be here at NLS days?

“Our main focus here at NLS Days is Nordic collaboration, both public and private, to promote the life science industry.”
Catherine Capdeville, Senior Adviser, Innovation Norway

“It is important to follow what is happening in the industry and in other innovation environments. We are here to nurture our existing contacts and find new partners.”
Morten Egeberg, Administrative leader, UiO Life Science

“Firstly, it is important to show that Norway stands together. This is a significant meeting place. We consider the Nordic countries to be our home market, so we try to present what we do here. It is important for one actor to take responsibility, like Oslo Cancer Cluster does, so that we can collectively gather here.”
Anita Moe Larsen, Head of Communication, Norway Health Tech

“In the long term, we have research projects where we are looking for contacts in the life science industry – both partners of collaboration and potential clients. We are here to promote the centre and let everyone know that we exist.”
Alexandra Patriksson, Senior Adviser, Centre for Digital Life

“We are here to strengthen our collaboration with the best research environments in neuroscience. We want to show that the health industry in Norway is growing and what we can do when we stand together.”
Bjarte Reve, CEO, Nansen Neuroscience Network

“We are happy to contribute to make Norwegian life sciences visible and to show what Norway can offer as a host country, and attract potential investors and collaborating partners in research and innovation. And especially to make visible and be a part of the Norwegian community in this field. It is unusual in Norway that so many different players, both public and private, stand together in one stand – with one common goal.”
Espen Snipstad, Communications Manager, LMI

 

Full list of partners:

 

The panelists during our breakfast meeting about precision medicine in Arendal: (from left to right) Audun Hågå, Director (Norwegian Medicines Agency), Per Morten Sandset, vice principal for Innovation (University of Oslo), Tuva Moflag (Ap), Marianne Synnes (H), Geir Jørgen Bekkevold (KrF).

Together for precision medicine

Debate from Arendalsuka

During Arendalsuka 2019, we arranged a breakfast meeting on the development of cancer treatments of the future, together with LMI and Kreftforeningen.

Arendalsuka has become an important arena for those who want to improve aspects of Norwegian society. We were there this year to meet key players to accelerate the development of cancer treatments.

Our main event of the week was a collaboration with Legemiddelindustrien (LMI) and The Norwegian Cancer Society (Kreftforeningen). We wanted to highlight the cancer treatments of the future and whether Norway is equipped to keep up with the rapid developments in precision medicine. (Read a summary of the event in Norwegian on LMI’s website)

First speaker, Line Walen (LMI), presented the problems with the traditional system for approving new treatments in face of precision medicine.

The second presenter, Kjetil Taskén (Oslo University Hospital), introduced their new plan at Oslo University Hospital to implement precision medicine.

Then, Steinar Aamdal (University of Oslo) talked about what we can learn from Denmark when implementing precision medicine.

Lastly, Ole Aleksander Opdalshei (Norwegian Cancer Society) highlighted a new proposal for legislation from the government.

The exciting program was followed by a lively discussion between both politicians and cancer experts.

There was general agreement in the panel that developments are not happening fast enough and that the Norwegian health infrastructure and system for approving new treatments is not prepared to handle precision medicine, even though cancer patients need it immediately.

The panelists proposed some possible solutions:

  • Better collaboration and public-private partnerships between the health industry and the public health sector.
  • More resources to improve the infrastructure for clinical trials, with both staff, equipment and financial incentives.
  • Better use of the Norwegian health data registries.

After the debate, we interviewed a few of the participants and attendees. We asked: which concrete measures are needed for Norway to get going with precision medicine?

Watch the six-minute video below (in Norwegian) to find out what they said. (Turn up the sound)

 

Did you miss the meeting? View the whole video below on YouTube (in Norwegian).

 

Full list of participants:

  • Wenche Gerhardsen, Head of Communications, Oslo Cancer Cluster (Moderator)
  • Line Walen, Senior Adviser, LMI
  • Kjetil Taskén, director Institute for Cancer Research, Oslo University Hospital
  • Steinar Aamdal, professor emeritus, University of Oslo
  • Ole Aleksander Opdalshei, assisting general secretary, The Norwegian Cancer Society
  • Marianne Synnes (H), politician
  • Geir Jørgen Bekkevold (KrF), politician
  • Tuva Moflag (Ap), politician
  • Per Morten Sandset, vice principal for Innovation, University of Oslo
  • Audun Hågå, Director Norwegian Medicines Agency

 

Thank you to all participants and attendees!

The next event in this meeting series will take place in Oslo in the beginning of next year. More information will be posted closer to the event.

We hope to see you again!

 

Organisers:

 

 

 

 

 

Sponsors:

 

Meet our new members

Oslo Cancer Cluster proudly presents the new members that have joined our organisation during the second quarter of 2019.

The new members represent a valuable addition to our non-profit member organisation, which encompasses the whole oncology value chain. By being a part of Oslo Cancer Cluster, our members are connected to a global network with many relevant key players in the cancer research field. Our members contribute to this unique ecosystem and ensure the development of innovative cancer treatments to improve patients’ lives.

 

theradex logo

 

Theradex Oncology

Theradex Oncology provides global clinical development services exclusively to companies developing new cancer treatments. The company has a strong emphasis on early drug development. It provides regulatory and medical support for companies taking cancer treatments into clinical development in the US and Europe.

Theradex Oncology staff has participated in educational events at Oslo Cancer Cluster for a number of years. This is how they became familiar with the cluster.

“Oslo Cancer Cluster provides a unique opportunity to share knowledge with other professionals dedicated to developing new cancer treatments.” Meg Valnoski, President Theradex Oncology

Meg Valnoski explains how the company has been supporting the development of cancer treatments for over 30 years and experienced the advancements in cancer treatments over that time.

 “We are always working to expand our knowledge and experience in cancer drug development to support our partnerships with companies developing new therapies for cancer treatment.”

Catapult Life Science

Catapult Life Science is a centre established to bridge the gap between the lab and the industry, providing infrastructure, equipment and expertise for product development and industrialisation in Norway. It has been formed as a result of joint efforts from a range of different players with a common goal of enabling more industrialisation of life science research in Norway, truly what the Norwegians call a dugnad.

“We see Oslo Cancer Cluster as a key partner for realising our purpose, which is to create new opportunities for product development and industrialisation in Norway.” Astrid Hilde Myrset, CEO Catapult Life Science

Myrset adds:

“Our vision is ‘Bringing science to life’, which implies enabling new ideas to a be developed in Norway for new employment in the pharma industry, new growth in the Norwegian economy, and last but not least, new products to the market, enabling a longer and healthier life for patients.”

 

This post is part of a series of articles, which will introduce the new members of our organisation every three months.

  • To find out who else is involved in Oslo Cancer Cluster, view the full list of members
  • Follow us on Facebook or subscribe to our newsletter to always stay up to date!

 

Gunhild M. Mælandsmo, Per Morten Sandset and Cathrine M. Lofthus have joined our board.

New board members

We are happy to welcome three new members to the board of Oslo Cancer Cluster. Find out what they had to say about entering their new positions.

Per Morten Sandset

Per Morten Sandset is a Senior Consultant in hematology at the Oslo University Hospital and a professor in thrombosis research at the University of Oslo. He has previously been head of the Department of Hematology and Deputy Director of the Medical Division at Ullevål University Hospital and Director of Research, Innovation and Education of the southeastern Norway Health Region. He is currently Vice-Rector at the University of Oslo with responsibilities for research and innovation including the life sciences activities of the university. Sandset has published more than 315 original publications and supervised 30 PhD students.

Why did you join the board of Oslo Cancer Cluster?

“There are currently strong political expectations that the many scientific achievements in the life sciences can be utilized, commercialized and eventually form the basis for new industry.”

“Oslo Cancer Cluster has matured to become a major player of the research  and innovation ecosystem within the life science area in Oslo and also on a national level. This is why being on the board is so interesting and important.”

What do you hope to achieve in your new role?

“As a OCC board member, I want to strengthen and develop the collaboration across the sectors, i.e., between the hospitals and the university – and between academia and industry. On a larger scale, it is about establishing a regional ecosystem that take achievements of the basic sciences into the development of enterprises. Oslo Cancer Cluster should maintain its role as the major player in the cancer area.”

Gunhild M. Mælandsmo

Gunhild Mari Mælandsmo

Gunhild M. Mælandsmo is the head of Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital where she also is heading the “Metastasis Biology and Experimental Therapeutics” research group. She is a Professor at Faculty of Health Sciences, University of Tromsø.

Why did you join the board of Oslo Cancer Cluster?

“I think the concept of Oslo Cancer Cluster is very interesting, fostering a close collaboration between academia, health care providers and the health industry. 

“Focusing on translational research for many years, I think I can contribute in the board with valuable experience in several parts of the value chain; from basic science, from translational aspects and from my close collaboration with clinical partners as well as administrative experience.”

What do you hope to achieve in your new role?

“I hope I can contribute with valuable knowledge – both from cancer research and from my administrative experience from Oslo University Hospital. I also hope to see more products from small Norwegian companies reaching clinical testing and expanding the biotech industry. Finally, I hope to see the Norwegian health care system more active in providing precision cancer medicine (and to utilise the advantages we have when it comes to registries etc).”

Cathrine M. Lofthus

Cathrine M. Lofthus is the CEO at the Norwegian South East Regional Health Authority (Helse Sør-Øst RHF). She has previously held several leading positions at Aker University Hospital and at Oslo University Hospital. Lofthus is a qualified doctor from the University of Oslo, where she also completed a PhD in endocrinology. She also holds qualifications in economy, administration and leadership, and has experience from the health sector as a clinician, researcher and leader. Lofthus also holds directorships in Norsk helsenett and KLP, in addition to being a member of the board of National e-Health.

 

We also wish to extend a special thank you to our previous board members:

  • Kirsten Haugland, Head of the Research and Prevention Department at the Norwegian Cancer Society.
  • Inger Sandlie, professor at the Department of Biosciences, University of Oslo and research group leader at the Department of Immunology, Oslo University Hospital.
  • Øyvind Bruland, professor of clinical oncology at the University of Oslo and consultant oncologist at The Norwegian Radium Hospital, Oslo University Hospital.
Tor Haugen attended a work placement at Thermo Fisher Scientific, arranged by Oslo Cancer Cluster and Ullern Upper Secondary School, where he tried DNA profiling. Photo: Elisabeth Kirkeng Andersen

DNA profiling on the syllabus

Tor takes a mouthswab before in order to profile his DNA.

Students learned about a Norwegian invention behind CAR T-cell therapy and DNA profiling on their latest work placement.

This article is also available in Norwegian here.

Thermo Fisher Scientific is a global company that develops the Norwegian technology, which is based on “Ugelstad-kulene” (The Ugelstad Beads). In June 2019, Einar, Tor, Olav and Philip from Ullern Upper Secondary School completed a work placement with Thermo Fisher Scientific in Oslo. They used the beads to profile their own DNA and learned how the beads can be used to find murderers, diagnose heart attacks and save children from cancer.

“What do you plan to study when you finish upper secondary school?” Marie asks.

“The natural sciences,” Einar and Tor replies.

“The natural sciences at NTNU,” Olav says.

“First, the natural sciences and then, join the Air Force,” Philip answers.

Marie Bosnes is supervising the students who are attending the work placement and has worked more than 24 years in the Norwegian section of Thermo Fisher Scientific. She conducts research and development in the former monastery located on Montebello, next to Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School.

Today, Marie and several of her co-workers have taken time out of their busy schedules to tutor the four students from Ullern: Einar Johannes Rye, Tor Haugen, Olav Bekken and Philip Horn Børge-Ask. The students have nearly finished their second year and have so far focused their studies on mathematics, physics, chemistry and biology. But next year, they will also study programming, instead of biology.

“It is a good mix of subjects, especially programming is useful to learn. You should consider studying bioinformatics, because, in the future, it will be a very desirable qualification,” Marie says.

Marie has studied biology and her co-workers call her Reodor Felgen (a character from a famous Norwegian children’s comic book), since she loves to constantly explore research on new topics.

Treating cancer

An ullern student is looking at the dynabeads in a test tube.

Philip Horn Børge-Ask looks at the test tubes that contain the famous “Ugelstad-kulene”. Photo: Elisabeth Kirkeng Andersen

While Einar, Tor, Olav and Philip are on a work placement with Marie, four other Ullern students are on another work placement with Thermo Fisher Scientific in Lillestrøm. This is where they develop and produce Dynabeads for the global market.

“Dynabeads are also kalled ‘Ugelstad-kulene’, because they are a Norwegian invention. During the ‘1970s, one of NASA’s goals was to make perfectly round and identical, tiny, plastic microbeads in outer space. No one thought it was possible to make them on Earth. John Ugelstad, a Norwegian chemical engineer, did not accept that fact. He completed several difficult calculations, which enabled him to produce these tiny beads on Earth,” Marie explains.

Thanks to the tiny beads, Thermo Fisher Scientific has experienced huge global success. Even though there are only 200 employees situated in Norway (out of 70 000 employees globally), the research and development conducted in Norway is extremely important for the whole company.

“We are proud to announce that every year Dynabeads are used in almost 5 billion diagnostic tests in the world,” Marie says.

Thermo Fisher Scientific has developed the beads further, so they can be used in CAR T-cell therapy to treat cancer. The first approved CAR T-cell therapy in the world that treats child leukaemia was approved in Norway in December 2018. The advanced technology is based on the Norwegian invention “Ugelstad-kulene”.

  • Watch the video from the Norwegian TV channel TV2 about Emily Whitehead, the first child in the world that received this CAR T-cell therapy. She visited Thermo Fisher Scientific in Oslo in March 2019.

Catching killers

Elisabeth and Mary are supervising the students in the lab

Elisabeth Breivold and Marie Bosness from Thermo Fisher Scientific supervised the students in the lab. Photo: Elisabeth Kirkeng Andersen

“The beads are used for many different purposes and you will learn about a few of them today. Simply put, the beads are like a fishing rod. Depending on which bait you fix to it, the rod can be used in different ways,” Marie says. “Before lunch, we will use Dynabeads for DNA profiling. This technology is commonly used by police to identify suspects after a crime, just like in the TV series CSI.”

During the presentation, Marie shows the students the front page of an American newspaper with a mugshot of Gary Ridgway, an American serial killer, also known as “The Green River Killer”. Ridgway has now confessed to killing 71 women. For many years, the police hunted the murderer without any luck. Finally, new technology enabled the police to retrieve damning evidence from the tiny amounts of DNA that Ridgway had left on his victims. The DNA evidence led to a successful conviction of the killer.

“The DNA evidence was established with DNA profiling, using Thermo Fisher Scientific’s products. They did not use Dynabeads back then, but today, they would have used the beads. You will learn how to do it yourselves in the lab,” Marie says.

Learning to profile DNA

Olav takes the mouth swab

Olav performs a mouth swab on himself, the first step to retrieve the DNA. Photo: Elisabeth Kirkeng Andersen

Before the students enter the laboratory, they need to put on protective glasses, lab coats and plastic shoe covers. The students will profile their own DNA, the same way the police profile the DNA from suspects or criminals.

First, the Ullern students collect the cells with a mouth swab. Then, they add the different enzymes and chemicals that will open the cell membranes into the test tube, so that the DNA is released.

Afterwards, the Ullern students add “Ugelstad-kulene”, which bind to the DNA like magnets. Then, they retrieve their DNA from the solution.

They put the DNA in a kind of “photocopier”, in order to study it with something called “gel electrophoresis”. This is a method for analysing individual parts of DNA that make up the human genome. It shows a bar code pattern, which is completely unique for every person in the world.

Tor is using the pipette in the lab.

Tor adds new chemicals to the solution with his DNA. Photo: Elisabeth Kirkeng Andersen

“DNA is incredibly stable, which means that we can retrieve it from people and animals that died a long time ago and copy their DNA so that it can be analysed,” Marie explains.

“The most fun was to retrieve our own DNA. We tried it ourselves and it was fun to learn how to do it,” Philip says.

The Ullern students were very happy with their work placement at Thermo Fisher Scientific.

“I think the placement was educational and interesting. It was very well arranged and we got to try many different things. What surprised me the most was probably the close collaboration between scientists at Thermo Fisher Scientific – it seemed like everyone knew each other!” Philips says at the end of the day.

After the students had completed the DNA profiling, they ate lunch and then they learned more about the use of “Ugelstad-kulene” in diagnostics, and CAR T-cell therapy.

Elisabeth Breivold supervised the students while they performed the DNA profiling in the laboratory at Thermo Fisher Scientific. Photo: Elisabeth Kirkeng Andersen

 

Sign up to OCC newsletter

Martin Bonde, CEO of Vaccibody, a member of Oslo Cancer Cluster, held a company presentation at the International Cancer Cluster Showcase 2019.

Dynamic networking and pitch sessions at ICCS 2019

Martin Bonde, CEO Vaccibody.

Oslo Cancer Cluster and its international partners organised the International Cancer Cluster Showcase (ICCS) on 3 June in Philadelphia, kickstarting this year’s BIO International Convention.

The aim of this annual event is to showcase cutting edge oncology research and development activities performed in start-ups and biotechs from Oslo Cancer Cluster and its international partners from North America and Europe.

This year’s meeting offered a compact program including company presentations, engaging poster sessions and lively networking among representatives of the international oncology community.

Jutta Heix, Head of International Affairs at Oslo Cancer Cluster, and main organizer of the event:

“Building on the first meeting at the Whitehead Institute in Cambridge in 2012, ICCS was established as a successful format to expose and connect emerging oncology companies to executives of the global oncology community attending the BIO International Convention.

“Via collaboration with partners from North American and European innovation hubs, we gather a strong group of exciting new companies and attract more than 200 participants.”

Jan Alfheim, CEO of Oncoinvent, another member of Oslo Cancer Cluster also held a presentation.

Among this year’s presenters were our members OncoInvent and Vaccibody. The dynamic pitch session featured 20 companies from 9 countries advancing a variety of innovative oncology technologies and assets in preclinical and clinical development.

“ICCS was a great opportunity to present Vaccibody and our recent progress towards a relevant international audience. It triggered new contacts and stimulated good discussions following the presentation.”
Martin Bonde, CEO of Vaccibody

Commenting on the highlights, Heix said:

“The National Institutes of Health / National Cancer Institute (NCI) participated for the 2nd time. Michael Salgaller, Supervisory Specialist Technology Transfer Center presented the partnering opportunities and benefits the NCI offers to outside parties from academia and industry.

“Our sponsors Precision for Medicine, Takeda Oncology and Boehringer Ingelheim enriched the program by short presentations and active discussions during the humming poster and networking sessions.”

 

The event was sponsored by:

 

The event was organised by:

Emmy and Benedicte learned about research into neuroscience and how to use modern medical technology, such as CRISPR, when on work placement with researcher Marianne Fyhn and her colleagues at the University of Oslo. Photo: Monica Jenstad

Learning about the human brain

Oslo Cancer Cluster and Ullern Upper Secondary School arranged a work placement for students to learn about neuroscience at the University of Oslo.

Four biology students from Ullern Upper Secondary School spent two great days on work placement with some of the world’s best neuroscientists at the University of Oslo. In Marianne Fyhn’s research group, the students tried training rats and learned how research on rats can provide valuable knowledge about the human brain.

The Ullern students, Benedicte Berggrav, Lina Babusiaux, Maren Gjerstad Høgden and Emmy Hansteen, first had to dress in green laboratory clothes, hairnets and gloves. They also had to leave their phones and notepads behind, before enterring the animal laboratory where Marianne Fyhn and her colleagues work. Finally, they had to walk through an air lock that blew the last remnants of dust and pollution off them.

On the other side was the most sacred place for researchers: the newly refurbished animal laboratory. It is in the basement of Kristine Bonnevies Hus on the University of Oslo campus. We used to call it “Bio-bygget” (“the bio-building”) when I studied here during the ‘1990s.

 

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

It is the second day of the students’ work placement with Marianne. The four biology students, who normally attend the second year of Ullern Upper Secondary School, have started to get used to their new, temporary jobs. They are standing in one of the laboratories and looking at master student Dejana Mitrovic as she is operating thin electrodes onto the brain of a sedated rat. PhD student Malin Benum Røe is standing behind Dejana, watching intently, giving guidance and a helping hand if needed.

“We do this so we can study the brain cells. We will also find out if we can guide the brain cells with weak electrical impulses. This is basic scientific research. In the long term, the knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm,” Marianne explained.

“The knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm.”

Dejana needs to be extremely precise when she connects the electrodes onto the rat’s brain. This is precision work and every micrometre makes a difference.

 

Training rats

The previous day, Maren, Benedicte, Lina and Emmy helped to train the rat on the operating table on a running course. Today, the Ullern students will train the other rats that haven’t had electrodes surgically connected to their brains yet.

“We will train the rats to walk in figures of eight, first in one direction and then the other”, the students explained to me.

We remain standing in the rat training room for a while, talk with Dejana and train some of the rats. Dejana tells me that the rats don’t have any names. After all, they are not pets, but they are cared for and looked after in all ways imaginable.

“It is very important that they are happy and don’t get stressed. Otherwise, they won’t perform the tasks we train them to do,” says Dejana. She and the other researchers know the animals well and know to look for any signs that may indicate that the rats aren’t feeling well.

“It is very important that they are happy and don’t get stressed.”

I ask the students how they feel about using rats for science.

“I think it is completely all right. The rats are doing well and can give us important information about the human brain. It is not okay when rats are used to test make-up and cosmetics, but it is a whole different matter when it concerns important medical research,” says Emmy and the other biology students from Ullern nod in agreement.

 

Understanding the brain

Marianne is the head of the CINPLA centre at the University of Oslo, where Maren, Benedicte, Lina and Emmy are on work placement for two days. Four other Ullern students, Henrik Andreas Elde, Nils William Ormestad Lie, Hans Christian Thagaard and Thale Gartland, are at the same time on a work placement with Mariannes research colleague, Professor of Physics Anders Malthe-Sørenssen. They are learning about methods in physics, mathematics and programming that help researchers to better understand the brain.

“CINPLA is an acronym for Centre for Integrative Neuroplasticity. We try to bring together experimental biology with calculative physics and mathematics to better understand information processing in the brain and the brain’s ability to change itself,” says Marianne.

Physics, mathematics and programming are therefore important parts of the researcher’s work when analysing what is happening in the rat’s brain.

If you think that research on rats’ brain cells sounds familiar, then you are probably right. Edvard and May-Britt Moser in Trondheim received the first Norwegian Nobel Prize in Medicine in 2014. The award was given to them for their discovery of a certain type of brain cells, so called grid cells. The grid cells alert the body to its location and how to find its way from point A to point B.

Marianne did her PhD with Edvard and May-Britt, playing an essential role in the work that led to the discovery of the grid cells. Marianne was therefore very involved in Norway securing its first Nobel Prize in Medicine.

 

The dark room

Another room in the animal section is completely dark. In the middle of the room, there is an enormous box with various equipment. In the centre of the box, there is a little mouse with an implant on its head.

In this test room, there is an advanced microscope. It uses a laser beam to read the brain activity of the mouse as it alternates between running and standing still on a treadmill.

The researcher Kristian Lensjø is back from a longer study break at the renowned Harvard University and will use some of the methods he has learned.

“I will train the mouse so that it understands that for example vertical lines on a screen mean reward and that horizontal lines give no reward. Then I will look at which brain cells are responsible for this type of learning,” says Kristian.

The students stand behind Kristian and watch the mouse and the computer screen. When the testing begins, they must close the microscope off with a curtain so that the mouse is alone in the dark box. Kristian assures us that the mouse is okay and that he can see what the mouse is doing through an infra-red camera.

“This room and the equipment is so new, we are still experiencing some issues with the tech,” says Marianne. But Christian fixes the problem and suddenly we see something on the computer screen that we have never seen before. It is a look into the mouse’s brain while it runs on the treadmill. This means that the researchers can watch the nerve cells as the mouse looks at vertical and horizontal lines, and detect where the brain activity occurs.

 

Research role models

The students from Ullern know they are lucky to see how cutting-edge neuroscience is done in real life. Marianne and her colleagues are far from nobodies in the research world. Bente Prestegård from Oslo Cancer Cluster and Monica Jenstad, the biology teacher at Ullern who coordinates the work placements, made sure to tell the students beforehand.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level. They can see that the people behind the research are nice and just like any normal people. When seeing good role models, it is easier to picture a future in research for oneself,” says Monica.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level.”

Monica and Marianne have known each other since they were master students together at the University of Tromsø almost twenty years ago.

“I know Marianne very well, both privately and professionally. She is passionate about her research and about dissemination and recruitment. She also works hard to create a positive environment for her research group. Therefore, it was natural to ask Marianne to receive the students and it wasn’t difficult to get her to agree,” says Monica.

Back in the first operating room, Dejana and Malin are still operating on the rats. They will spend the entire day doing this. It takes time when the equipment needs to be found and sterilised, the rats need to be sedated and then operated on as precisely as possibly. It is past noon and time for lunch for Marianne, Kristian and the Ullern students on work placement.

Before I leave them outside Niels Henrik Abels Hus at the Oslo University Campus, I take a picture to remember the extra-ordinary work placement. And not least: to store a picture of the memory in my own brain.

 

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

 

Sign up to OCC newsletter

Cathrine Wahlström Tellefsen gave a talk to teachers on how programming can be used to teach science subjects in upper secondary schools.

Introducing programming to the curriculum

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter