The speakers Dr. Sara Mastaglio and Dr. Sara Ghorashian came to Oslo to share their research in T cell immunotherapy with the Norwegian research environment. Photo: Christian Tandberg

A café to advance T cell research

We want to accelerate cancer research in T cell immunotherapy!

In order to promote research collaboration, spread knowledge and exchange ideas, Oslo Cancer Cluster arranged a seminar together with Nature Research this week. The topic was T Cell Immunotherapy: Advances, Challenges and Future Directions.

What is T cell immunotherapy?

T cell immunotherapy is a rapidly growing area of research in cancer treatment. The research focuses on finding new ways to trigger the immune system to kill cancer cells.

The treatment method involves collecting T cells (a type of immune system cell) from a patient’s blood sample. The T cells are then modified in the laboratory so they will bind to cancer cells and destroy them.

One way to do this is called CAR T therapy. This involves adding a gene for a special receptor that binds to a specific protein (also called an antigen) on the patient’s cancer cells. The special receptor is called a chimeric antigen receptor (CAR). These cells are grown in large numbers in the laboratory and then infused in the patient to create an immune response.

Read more about CAR T cell therapies in this article from The National Cancer Institute

Many researchers attended the Nature Café for the opportunity to learn more about recent advances in T cell immunotherapy. Photo: Christian Tandberg

Why is cell therapy important?

Research into T cell immunotherapy is important, because it has the potential to treat and cure cancer. T cell immunotherapy can help cancer patients live longer and potentially has fewer side effects than traditional treatment methods, such as chemotherapy, radiation therapy and surgery.

However, more research is needed to make T cell immunotherapy work on all kinds of cancer. For example, some patients with haematologic cancer, cancers that develop in the blood-forming tissue, relapse into disease after treatment. Moreover, T cell immunotherapy does not work on all patients with solid cancer tumours yet.

Researchers wish to know why some cancers are resistant to T cell immunotherapy and why some patients acquire resistance to the treatment over time. Some patients also experience toxic side effects to T cell immunotherapy. Moreover, researchers are continually searching for possible new antigens (proteins) to target.

There are still many unanswered questions and that is why we need to accelerate the research.

Members of the audience were eager to find out more about this rapidly growing area of research. Photo: Christian Tandberg

Why did we arrange this event?

The Norwegian research environment in cancer immunotherapy is world-class. But Norway is a small country and researchers need access to international partners and expertise to develop their findings.

The purpose of the event was to highlight recent findings in T cell immunotherapy. There was also the opportunity to discuss ongoing challenges and opportunities in the development of these types of treatments.

Among the guests were several prominent Norwegian cancer researchers, the pharma industry, hospital clinicians, biotech start-ups, and more. During the seminar, many of the participants in the audience asked follow-up questions and the café breaks were buzzing with conversations between researchers.

The event was an opportunity to discuss with and learn from prominent researchers in the cell therapy field. Photo: Christian Tandberg

Watch the video below to see a few of the participants’ reactions:

Meet the speakers

The moderator for the event was Saheli Sadanand, Associate Editor, Research Manuscripts at Nature Medicine. Photo: Christian Tandberg

 

The first speaker was Sara Ghorashian from the University College London. Dr. Ghorashian is a consultant Paediatric Haematologist at Great Ormond Street Hospital for Children in London, and the co-investigator or lead UK investigator for six different CAR T cell clinical trials. She talked about her research to improve outcomes of CAR T cell therapy in patients with acute lymphoblastic leukemia. This is a type of cancer in the blood. Photo: Christian Tandberg

 

The second speaker was Attilio Bondanza, who is a physician-scientist and the CAR T cell program leader at Novartis Institutes of Biomedical Research in Basel, Switzerland. Before joining Novartis, Dr. Bondanza was a professor at the San Raffeale University Hospital, where he led the Innovative Immunotherapies Unit. Dr. Bondanza talked about his work to model CAR T cell efficacy and CAR T cell-induced toxicities pre-clinically. Photo: Christian Tandberg

 

The third speaker was Sara Mastaglio, who is a physician scientist specialising in haematology at San Raffaele Scientific Institute, in Milan. She has been actively involved in the development and clinical application of CAR T cell therapies. Dr. Mastaglio discussed her research on genome-edited T cells for the treatment of haematological malignancies. Photo: Christian Tandberg

 

The last speaker was Aude Chapuis, who is an assistant member of the Fred Hutchinson Cancer Research Center in Seattle. In addition to running a lab, she sees patients as an attending physician at the Fred Hutch Bone Marrow Transplant Program at the Seattle Cancer Care Alliance. Dr. Chapuis discussed mechanisms of response and resistance to instruct next generations of T cell receptor gene therapy. Photo: Christian Tandberg

 

Want to find out more?

In February 2020, the journal Nature Research will publish an article with a more detailed overview of the speakers, their presentations and the research. We will provide a link here when it is available!

If you enjoyed this event, please subscribe to our newsletter to receive invitations to our upcoming events and a digest of our latest news.

 

We want to thank our sponsors for helping us make this event happen.

Photo: Gunnar Kopperud

Kaare R. Norum has died

Kaare R. Norum died on Friday 22 November 2019, at an age of 86 years.

Kaare R. Norum was a professor of nutrition and interested in the connection between our diets and the risk of developing cancer. Norum was a driving force behind gathering the scattered cancer research environments in Oslo.

Norum initiated Oslo Cancer Cluster in 2006, together with Jónas Einarsson, CEO of RADFORSK. At the time, Norum and Einarsson realised that a natural cluster within oncology had developed around the Norwegian Radium Hospital.

The old Ullern Upper Secondary School was back then located on the premises next to the Norwegian Radium Hospital. When the old school was due to be refurbished, Norum and Einarsson had an idea. They wanted to build a new school instead, which would become more than just an ordinary school.

Norum signed the collaboration agreement with the school in 2008. During the following years, Norum, the cluster and the school worked so that the school could become part of a completely new innovation park. In this new building, cancer research would unite the school, the research environments and industry.

Making the dream a reality was at times arduous, but in the end, it was worth it. The old school was torn down in the spring of 2012 and Oslo Cancer Cluster Innovation Park was officially opened in August 2015.

The big auditorium in Ullern Upper Secondary School today is aptly named after Kaare Norum. He will always be the man that the students – the researchers of the future – will be inspired by.

 

Kaare Norum was active in the establishment of Oslo Cancer Cluster and Oslo Cancer Cluster Innovation Park. In this image, Jónas Einarsson and Kaare R. Norum participated in the opening of the Innovation Park on 24 August 2015. Photo: Gunnar Kopperud

 

Kaare Norum will be remembered as an ambitious man, who always wished to create new opportunities for science and development. He was generous and he promoted both people and projects.

He was a source of inspiration and support in the work with developing Oslo Cancer Cluster, and he meant a lot to us. He was a part of the board of Oslo Cancer Cluster as an honorary member since the establishment in 2006. He was also, during many years, an important mentor for Jónas Einarsson.

Kaare Norum was forthright and not afraid to challenge established truths or formalities when he looked for support in his most important issues. Lucky for us, in Oslo Cancer Cluster, we were one of his important issues.

Rest in peace, Kaare Norum.

 

Memorial message by,

Jónas Einarsson (CEO of RADFORSK)

Ketil Widerberg (General Manager of Oslo Cancer Cluster)

Øyvind Kongstun Arnesen (Chairman of the Board of Oslo Cancer Cluster)

 

 

Kaare R. Norum (24 December 1932 – 22 November 2019)

Norum was the principal of the University of Oslo from 1999 to 2001.

He wrote about 300 scientific articles and was known internationally for his research on nutrition. He also wrote several books in popular science and course books about health and nutrition.

Norum was Commander of the Royal Norwegian Order of Saint Olav and of the Swedish Royal Order of the Pole Star.

Read more on Kaare R. Norum’s Wikipedia page

Professor Kjersti Flatmark introduces the Ullern students to different cancer treatments, with a focus on colon cancer, during a theme day at Ullern Upper Secondary School. Photo: Elisabeth Kirkeng Andersen

Who wants to be a doctor?

We join forces with Ullern Upper Secondary School and Oslo University Hospital every year to arrange theme days for students, so they can get a sense of what it is like to be a doctor.

On 18 November 2019, students from the health program with specialisation in biology and chemistry at Ullern Upper Secondary School, gathered in Kaare Norum Auditorium at Oslo Cancer Cluster Innovation Park to learn more about opportunities in medicine. The initiator is Truls Ryder, father of a former student at the school. Ryder is a surgeon at the Norwegian Radium Hospital and has this year once again planned theme days for the students together with his colleagues.

For almost five hours, the Ullern students listened to some of the best oncologists in Norway talk about how they treat cancer patients affected by different forms of cancer. The students are studying either science or health subjects in their third year.

The theme day is a part of the close collaboration between Ullern Upper Secondary School and the Norwegian Radium Hospital, Oslo University Hospital. For two days, 18 of the students who consider applying to medical or nursing school will follow the oncologists around the different departments of the Norwegian Radium Hospital.

“The students who have been chosen to job shadow are in their last year and will soon choose their next program of study,” Bente Prestegård said. She is the project manager for the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster.

The purpose of the job shadowing is that students who participate will get an inside look into the opportunities that exist in medical subjects before choosing what to study next.

A fantastic initiative

Truls Ryder is the initiator behind the theme day and the following job shadowing, like he was last year. His children have gone to Ullern Upper Secondary School and he works as an attending physician at the Norwegian Radium Hospital.

“Thank you to the initiator Truls Ryder and his colleagues who have dedicated two days for this. It was really successful last year and we are incredibly happy to be able to offer the students this opportunity again,” Prestegård said.

Prestegård has contributed to the planning of the theme days with her long experience from other projects between members of Oslo Cancer Cluster and the school.

You can read about last year’s theme day and job shadowing here.

A varied program

The theme day today was spent in Kaare Norums Auditorium from 11:30 am to 4:00 pm. During these hours, the students have gained an in-depth introduction to modern cancer treatments, from radiology to plastic surgery, and what it is like to be a cancer patient and receive treatment.

“I look forward to the program myself, because there are many skilled experts, who will present what they do in cancer treatment and more. The goal with such a broad program is to give the students the greatest possible understanding of all the different directions and opportunities that medical study can offer,” said Ryder.

Program (Monday 18 November 2019):

11:30-11:55 Welcome, with Attending Physician Truls Ryder

11:55-12:20 Cancer treatment with focus on colon cancer, with Professor Kjersti Flatmark

Break

12:30-12:55 “Fight HPV” with Attending Physician Ameli Trope from Kreftregisteret

12:55-13:20 What is anesthesiology? with Professor Ulf Kongsgaard

Break

13:40-14:05 Melanoma, with Attending Physician Anna Winge-Main

14:05-14:30 Plastic surgery – more than just cosmetics! with Head of Clinic and Attending Physician Kim Tønseth

Break

14:40-15:05 Radiology – More than just x-rays! with Attending Physician Marianne Fretheim

15:05-15:30 What is it like to be a patient? with Jeanett Hoel, Chairman of the Norwegian Gynaecological Cancer Society and Attending Physician Kristina Lindemann

15:30-15:45 Summary and practical information concerning clinical rotation, with Attending Physician Truls Ryder

Ketil Widerberg, daglig leder Oslo Cancer Cluster, uttaler seg om tre viktige temaer i innstillingen om Helsenæringsmeldingen.

Tre viktige temaer i helsenæring

Næringskomiteens innstilling om helsenæringsmeldingen er klar. Dette mener Oslo Cancer Cluster om tre viktige temaer i innstillingen.

Næringskomiteens innstilling om helsenæringsmeldingen trekker frem mange viktige aspekter ved norsk helsenæring. Helse- og omsorgskomiteen kommenterer også meldingen i samme innstilling.

Oslo Cancer Cluster ønsker å kommentere spesielt tre temaer som disse to komiteene tar opp i innstillingen til Stortinget.

– Nå er det viktig at alle som ønsker en sterk norsk helsenæring følger opp hva meldingen betyr i praksis, sier Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

Kliniske studier

Komiteen går inn for en bedre tilrettelegging for kliniske studier og bruk av helseregistre, slik Helsenæringsmeldingen foreslår. En samlet næringskomité mener videre at forventningene til innovasjon og samarbeid med forskning og næringsliv i oppdragsdokumenter til helseforetakene må følges opp med insentiver og finansieringssystemer.

– Vi applauderer at komiteen krever finansieringssystemer for dette. Vi ønsker å understreke hvor viktig det vil være å innføre en takst for kliniske studier som gjør at leger og andre helsearbeidere får tid og insentiver til å utvikle bedre behandling for pasienter – i samarbeid med industrien, sier Ketil Widerberg.

Oslo Cancer Cluster foreslo i sitt høringsinnspill til helsenæringsmeldingen å etablere et nasjonalt senter for kliniske studier, og at senteret knyttes til en felles database for helsedata hvor både myndigheter, forskning og industri kan få tilgang til løpende pasientdata fra behandling av den enkelte pasient.

Oslo Cancer Cluster foreslo også å etablere et nordisk senter for celleterapi. Det er vel innen rekkevidde, tatt i betraktning at Norge er ledende på immunterapi og spesielt celleterapi spesielt innen kreft – og at kreft er spydspissen i kliniske studier internasjonalt.

Begge disse forslagene fra Oslo Cancer Cluster har komiteen trukket frem i sin innstilling.

Norge har blitt det minst attraktive landet i Norden for kliniske studier. Oslo Cancer Cluster understreker at Norge må tørre å være først ute på to vesentlige områder for å snu denne utviklingen:

Norge må nå ta lederrollen i utviklingen av klinisk dokumentasjon og være et foregangsland i godkjenning av ny presisjonsmedisin.

Den muntlige høringen i Næringskomiteen kan sees i sin helhet på Stortingets nettsider.

Offentlig-privat samarbeid

– Oslo Cancer Cluster har alltid prioritert arbeidet for en sterkere kultur for samarbeid og dialog mellom helsetjenesten, akademia og næringsliv. Det er et kontinuerlig arbeid og vi ser med glede at komiteen stiller seg bak dette, sier Widerberg.

Komiteen peker på at Norge i løpet av de siste årene har bygd opp verdensledende helseklynger som nettopp Oslo Cancer Cluster og Norway Health Tech. Disse klyngene har utviklet økosystemer som bidrar til å etablere nye bedrifter og øke konkurransekraften.

Komiteen ber regjeringen “vurdere tiltak som kan sikre videreføring av klyngene som en møteplass mellom det offentlige og private og som bidragsytere til internasjonal vekst.”

For Oslo Cancer Cluster er det motiverende å se at dette blir poengtert.

Helsedata

– Helsedata er et tema som Oslo Cancer Cluster har engasjert seg i siden oppstarten for over ti år siden, men som vi ser nå blir stadig mer aktuelt grunnet sammensmeltingen av biologi og teknologi, sier Widerberg.

Komiteen peker på mange muligheter med helsedata, som er en viktig del av norsk helsenæring – ikke minst for å gi pasienter best behandling.

– Vi ser imidlertid behovet for en konkretisering av hvordan vi legger opp til bruk av helsedata i utvikling av legemidler. Vi trenger også en mer konkret plan for hvordan vi kan bruke helsedata for å forstå genetisk data for å bedre helsen vår, sier Widerberg.

Næringskomiteens innstilling om helsenæringsmeldingen ble behandlet i Stortinget 26. november 2019. Møtet ble filmet og ligger i Stortingets videoarkiv.

 

Les mer

 

1 650 people attended EHiN 2019 to discuss e-health in Norway. Photo credit: Ard Jongsma / Still Words Photography

EHiN 2019 – highlights

Did you miss EHiN this year? Or simply want to catch up on the highlights relating to cancer research? Read our short summary below.

EHiN, short for e-health in Norway, is Norway’s national conference on e-health. It is a meeting place where decision-makers, the business community and the health sector gather to talk, share knowledge, learn from each other and collaborate.

This year, Oslo Cancer Cluster became a co-owner of EHiN (together with ICT Norway and Macsimum), because we believe new technologies and digital solutions are essential in the development of novel cancer treatments. This will only be possible if public and private organizations find new models of collaboration and EHiN is a great platform to create those future partnerships.

Read this interview to find out more about how new technologies can improve cancer research

 

A conversation on health data during day 1 of EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Capturing the value of health data

An engaging dialogue on the value of health data took place at the end of the first day.

Health data will revolutionize how we understand and how we treat diseases, such as cancer. Better diagnosis and monitoring will change how we design our healthcare systems. A central question is how we capture the value of this revolution. Some fear multinationals like Google and Facebook will exploit our unique health data for profit. Others fear that Norwegians will value and protect their health data too well, resulting in innovation happening elsewhere. Is there a golden mean between giving full access to health data and charging the highest price?

Ketil Widerberg, General Manager at Oslo Cancer Cluster, led the conversation with a panel of four. Joanne Hackett, Chief Commercial Officer at Genomics England, brought an international perspective and experiences of how they have collected 100 000 genomes from patients with rare diseases. Sigrid Bratlie, award-winning cancer researcher, shared her knowledge of new cancer treatments and the opportunities they present in conjunction with health data. Heidi Beate Bentzen, Doctoral Research Fellow at University of Oslo, represented some of the legal considerations when dealing with health data. Rajji Mehdwan, General Manager at Roche, contributed with the pharma industry perspective.

 

The crowded crowded expo area during EHiN 2019. Photo credit: Ard Jongsma / Still Water Photography

Networking in the expo area

The expo area is the heart and soul of EHiN. This is where public and private organizations can meet under informal circumstances and create new partnerships. These collaborations are what lead to knowledge sharing and that digital solutions can be implemented in the health sector.

This year, a pharma company was present in the expo area for the very first time, our member Roche. Roche are investing more in genetic testing and personalized medicines than ever before. But why are genetic tests important for cancer treatments? Cancer is more than a disease, it is about the composition of DNA, RNA and proteins – and how these relate to one another. Every cancer tumor is therefore unique, but by finding out more about the genetic sequence, one can develop personalized treatments that target the tumor effectively.

In the expo area, a variety of start-ups, IT companies, health clusters, public organisations and academic institutions were also present. For two days, the area was buzzing with interactions, meetings and talks.

We hope you carry on the conversations and that we see all of you again next year!

 

Ketil Widerberg, General Manager of Oslo Cancer Cluster, looks forward to taking part in EHiN - Norway's national e-health conference - next week.

Machine learning improves cancer research

This interview was first published on EHiN’s official website. Scroll down to read it in Norwegian.

 

EHiN is important in order to realise the opportunities that digital technologies can give patients, society and industry.

Ketil Widerberg is the General Manager of Oslo Cancer Cluster, which is a co-owner of EHiN 2019. We asked Ketil Widerberg a few questions about why digitalization and EHiN are important for cancer research.

–Can you describe in short what Oslo Cancer Cluster is and what you do?

Oslo Cancer Cluster is a non-profit member organization that gathers public and private players. The goal is to transform cancer research into treatments that change patients’ lives. We are a National Centre of Expertise (NCE).

–You are now co-owners of EHiN. What do you wish to achieve with that?

Oslo Cancer Cluster has the last ten years developed and established well-known meeting places (such as Cancer Crosslinks) by combining different disciplines. In the future, digitalisation and precision medicine (e-health) will be a central area in cancer research.

EHiN is a perfect match in this area. EHiN will be an important platform in order to realise the opportunities that digital technologies can give patients, society and industry.

–What do you think AI will mean for cancer research?

Today’s breakthroughs in treatment will often only work on 3 out of 10 patients. Artificial intelligence will change medicine in two ways. First, how we understand cancer. In the same way as the microscope gave us the ability to see things on a cellular level, data will now help us to see patterns we never would have discovered.

Second, how we treat cancer will change. We have to be ready to give the right treatment to the right patient at the right time. One way of giving individualised treatments is to recognize patterns – patterns that show how a patient will react from a treatment.

After that, you can see in larger groups of people if this pattern is repeated. Then, you select the patients that have a positive response to the treatment. This will, to begin with, not be a perfect method, but if you repeat this process, the modern machine learning systems can make it better and better.

–We know that health research takes time. How can digital solutions improve this?

Digitalisation will accelerate the development of new treatments in several areas. One area is clinical studies. Digital technology can help to adjust studies according to patient responses and enable digital control arms that shorten years off the developmental period. Digital solutions can make clinical trials more flexible and efficient, by reducing the administrative burden on companies and at the same time make it simpler for patients to enroll.

Gradually, as the volume and speed of the data increases, we have the opportunity to use new machine learning algorithms – such as deep learning. The algorithms can identify digital biomarkers that will give faster and better development of new treatments.

–Why is EHiN an important meeting place for Norway?

EHiN is relevant for Oslo Cancer Cluster because the IT revolution is about to hit the oncology field. Personalized treatments, genomics and the use of health data will soon develop into one of the most important areas of “e-health”. This is also an area that is of great interest for the IT industry, for data storing, data analysis, machine learning, pattern recognition, connecting different data sources, and so on.

At the same time, the technology will also impact the academic world and the pharmaceutical part of the health sector, and contribute to set the rules for the whole value chain in health processes in decades to come. EHiN wishes, in collaboration with Oslo Cancer Cluster, to build Norway as an important international hub in the area of e-health – by gathering and showcasing the different activities at the conference and in other settings.

 

–Selvlærende datasystemer gjør kreftforskning stadig bedre

EHiN er ifølge Ketil Widerberg viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet. Widerberg er daglig leder for Oslo Cancer Cluster, som i høst 2018 gikk inn som medeier av EHiN.

Vi stilte Ketil Widerberg noen spørsmål om hvorfor digitalisering og EHiN er viktig for kreftforskning.

–Kan du beskrive kort hva OCC er og hva dere gjør?

OCC er en non-profit medlemsorganisasjon som samler offentlige og private aktører. Målet er å gjøre kreftforskning til produkter som endrer pasienters liv. Vi er et NCE (National Centre of Expertise).

Dere har blitt med på EHiN. Hva ønsker OCC å oppnå med det?

Oslo Cancer Cluster har de siste 10 årene utviklet og etablert anerkjente møteplasser (som Cancer Crosslinks) ved å kombinere forskjellige fag-grener. Fremover vil digitalisering sammen med presisjonsmedisin (e-Helse) være et sentralt område innenfor kreft.

EHiN er en perfekt match for dette området. I tråd med OCC sin strategi vil EHiN være viktig for å få realisert gevinsten digital teknologi kan tilføre pasientene, samfunnet og næringslivet.

–Hva tror du AI kan bety for forskning rundt kreft?

Dagens behandlingsgjennombrudd vil ofte bare virke på 3 av 10 pasienter. Kunstig intelligens vil endre medisin på to måter. Hvordan vi forstår kreft. På samme måte som mikroskopet ga oss evnen til å se helt ned på cellenivå, vil data nå hjelpe oss til å se mønster vi aldri ellers ville oppdaget.

Hvordan vi behandler kreft vil forandre seg. Vi må derfor klare å gi den rette behandlingen til den rette pasienten til rett tid. En måte å kunne gi individbasert behandling er å gjenkjenne mønster. Mønster som viser hvordan en pasient vil reagere på en behandling.

Deretter se i større grupper mennesker om dette mønsteret gjentar seg. Da kan man plukke ut de pasientene med positivt utbytte av behandlingen. Dette vil i begynnelsen ikke være en perfekt metode, men hvis man gjentar denne prosessen, kan moderne selvlærende datasystemer gjøre den stadig bedre.

–Vi vet at helseforskning tar lang tid. Hvordan kan digitale løsninger bidra på dette?

Digitalisering vil akselerere utviklingen av ny behandling på flere områder. Ett område er kliniske studier. Digital teknologi kan gjøre at studier justeres etter respons og muliggjøre digitale kontrollarmer som korter år av utviklingstiden. Kliniske forsøk kan bli fleksible og effektive ved å redusere administrative byrder på firmaer, og samtidig gjøre det enklere for pasientene.

Etter hvert som volumet og hastigheten på data øker, har vi mulighet til å bruke nye maskinlæringsalgoritmer – som dyplæring. Det kan identifisere digitale biomarkører som vil kunne gi raskere og bedre utvikling av ny pasientbehandling.

–Hvorfor er EHiN en viktig møteplass for Norge?

EHiN er faglig relevant for OCC fordi IT-revolusjonen er i ferd med å slå inn på onkologi feltet. Persontilpasset medisin/behandling, genetikk og bruk av helsedata vil snart utvikle seg til et av de viktigste områdene innen “e-helse”. Dette er også et område som er av stor interesse for IT-bransjen (datalagring, analyse, machine learning, mønstergjenkjenning, kobling av ulike datakilder osv.).

Samtidig vil teknologien også få konsekvenser for den akademiske verden, samt den farmasøytiske delen av helsesektoren, og bidra med å legge rammene for hele verdikjeden i helseprosessene i tiårene fremover. EHiN ønsker, i samarbeid med OCC, å bygge Norge som en viktig internasjonal hub på området e-Helse ved å samle og vise frem ulike aktiviteter på konferansen og også i andre sammenhenger.

 

From left to right: Simone Mester, PhD student at UiO, Øyvind Kongstun Arnesen, CEO of Ultimovacs, Jonas Einarsson, CEO of Radforsk and Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, met the Ullern students of the researcher program.

Meet the mentors

Read the questions and answers from when the students at Ullern Upper Secondary School met their mentors for the very first time.

In the middle of October, 32 students at the researcher program at Ullern Upper Secondary School got to meet their four mentors for the next year. After a short introduction, there were many questions from the students to the mentors. It took an hour and a half before their curiosity settled down and it was time for pizza.

Simone Mester: “I am a former student of Ullern Upper Secondary School and now I am doing a PhD in molecular biology. In the long term, I could imagine working in the private sector developing pharmaceuticals.”

Øyvind Kongstun Arnesen: “I am a doctor and worked many years in Lofoten. After that, I worked some years as a surgeon in an emergency room, before I began working for a large German pharmaceutical company called Boehringer Ingelheim. Eight years ago, I became CEO for Ultimovacs. Ultimovacs are trying to develop the worlds first cancer vaccine.”

Jónas Einarsson: “I am a doctor, and did the first part of my medical degree on Iceland, because my grades weren’t the best. Then, I worked many years as a general practitioner in Lardal, before moving to Oslo and becoming the manager of the first private hospital in Norway. In parallel with this, I did a degree in economy and management at BI. Finally, I became the CEO of Radforsk, who among other things, initiated the Oslo Cancer Cluster Innovation Park and this school collaboration.”

Bjørn Klem: Bjørn is the fourth mentor, but he was unfortunately ill during the first meeting. Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, came in his place. Nestvold has a PhD and has worked as a researcher for many years.

 

After the introductions, the teachers at the researcher program, Ragni Fet and Monica Flydal Jenstad held a short presentation of the upcoming work with the mentors.

Then, there were several questions from the audience.  We were really impressed by the amount and quality of the questions, that concerned both education, job opportunities and, research and development, which both Kongstun and Mester are a part of. The questions rained down and the answers came in a session that continued for over an hour and a half. You can read some of them below. Then it was time for some pizza and mingle.

The next time the students and the mentors will meet will be in the beginning of December. The students will meet in the mentors’ workplaces and see with their own eyes what they do on an everyday basis.

 

Questions and answers:

What kind of medical specialisation does Jónas and Øyvind have?

“We are both general practitioners and have not specialised. You do not have to.”

 

What kinds of jobs can you do after you are finished, Simone?

Simone: “I can do a postdoc to become a researcher in academia. I am still a student while I am doing my PhD, but I receive a salary. It is normal to do two postdocs, then you can become group leader or professor. I don’t think I will follow that route, I would much rather work in a private company or start something myself. I think that seems more exciting.”

Jónas: “Simone will get a job immediately in one of our companies if she wants it.”

 

Are there many developments every day to find a cancer vaccine?

Jónas: “It takes time, so the short answer is no.”

 

What is the greatest challenge with the cancer vaccine that Ultimovacs are developing?

Øyvind: “To make it work? A good and difficult question.”

Øyvind explained further about the development and testing of the vaccine at Ultimovacs.

 

What is your PhD about, Simone?

Simone: “I develop technology that prolongs the half-life of medicines. It is a patient-focused PhD, since it is a big inconvenience for the patient to take medicines often, but I hope we can succeed in prolonging the half-life so that patients can take the medicine once a week or once a month.”

 

What should one study if one wants to work with medical development or pharmaceutical development?

Jónas: “Molecular biology, physiology, IT, physics, chemistry, biology, statistics  – there are many opportunities.”

Øyvind: “In our company, we have physiologists, doctors, protein chemists, dentists and pharmacists working right now.”

 

When you went to upper secondary school, did you know that you would be doing what you do today?

Jónas: “I chose the natural science, but did not know anything else.”

Øyvind: “I only knew I wanted to study natural science.”

Simone: “I was thinking about studying a medical degree, but I am happy that I chose molecular biology.”

Janne: “I thought about becoming a researcher and thought it seemed exciting. You should absolutely think widely and not just the easiest solution when you are still in upper secondary school. You will benefit from that when you begin to study at university.”

 

Have you always been interested in biology, or was there something special you saw that made you excited about it? 

Jónas: “Yes, always.”

Øyvind: “Biology in itself is very fascinating. There is so much we do not know, like where memories are stored in the brain, for example. We know very little about how the body works, so that is very fascinating.”

 

The cancer vaccine you are developing, will it work against all cancers or only specific types of cancer?

Øyvind: “It will work to treat and protect against most cancer types.”

 

What did Bjørn do in PhotoCure, the company he worked for before becoming manager for Oslo Cancer Cluster Incubator?

Jónas: “He was Head of Research. He is a very smart guy, and he has also worked a lot with the regulatory side.”

 

From left to right: Bente Prestegård, Project Manager at Oslo Cancer Cluster, Henrikke Thrane-Steen Røkke, student, Peder Nerland Hellesylt, student, and Ragni Fet, Teacher at Ullern Upper Secondary School are happy to see the launch of the researcher program.

Educating the cancer researchers of tomorrow

Ullern Upper Secondary School and Oslo Cancer Cluster are paving the way for students to become the researchers of the future.

A new program has been launched this autumn for Ullern students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. It is the only researcher program for upper secondary school in Norway.

“The researcher program at Ullern will be a place where students are encouraged and guided to become independent students, with a need to explore, an understanding of methods and a desire to learn,” said Ragni Fet, teacher at Ullern Upper Secondary School. “They will learn to gather good and reliable information, they will do research in practice through varied experiments, and they will gain real insight into job opportunities in the research industry.”

The program is a joint initiative between Oslo Cancer Cluster and Ullern Upper Secondary School, who have been collaborating since 2009. This has offered students in the natural sciences, health, media and electricity special opportunities to learn science subjects outside a traditional classroom setting.

“The purpose of launching a researcher program at Ullern Upper Secondary School is to recruit the researchers, scientists and entrepreneurs of the future,” said Bente Prestegård, Project Manager at Oslo Cancer Cluster. “We know that these jobs are needed, and we want to teach students about what it means to be a researcher or entrepreneur. With better insight into the professions, the students will be able to make a safe career choice.”

 

With a passion for science

About 30 students have already begun this unique program at Ullern Upper Secondary School. One of them is Henrikke Thrane-Steen Røkke.

“I chose the researcher program because I personally enjoy studying the natural sciences and innovation, and I wanted more of those subjects. I had entrepreneurship as an elective at secondary school and thought it was a lot of fun. I think it seemed very exciting and wanted to learn more,” Henrikke explained. “I hope I can gain insight into what it is like to work as a researcher. I hope we can see and experience a lot of it in practice and to work in depth with some subjects in certain areas.”

The program is especially well suited for students with an interest in the natural sciences, such as Peder Nerland Hellesylt, who also recently begun the program.

“I applied to this program because I have always had an interest for the natural sciences and mathematics,” Peder said. ”I think this program is very interesting because we aren’t just sitting and writing, but get practical tasks too, for example experiments.”

 

Mixing theory with practice

Ullern Upper Secondary School is located right next to The Norwegian Radium Hospital, The Institute for Cancer Research, The Norwegian Cancer Registry and the Oslo Cancer Cluster Incubator, with its over 30 big and small companies. The students are therefore never far from world class researchers. This offers the unique opportunity to take advantage of the co-localisation and use mentors from the research milieu in the teaching.

“Through the collaboration with Oslo Cancer Cluster, we will obtain external lecturers to the class rooms; bring the students to multiple, exciting innovation companies and laboratories; and the students will attempt real research experiments themselves. We are raising the level and are ambitious for the sake of the students,” Ragni Fet said.

 

Sign up to OCC newsletter

From left to right: Gaspar Taroncher-Oldenburg, Marko Kuisma, Jørn Skibsted Jakobsen, Carl Borrebaeck, Kristian Pietras, Kaisa Helminen and Mark Swindells engaging in the lively panel discussion.

Forward-looking session on cancer precision medicine

Emerging therapies, digital solutions and AI were central topics when international experts met during the oncology session at the Nordic Life Science Days 2019.

Oslo Cancer Cluster hosted the session on oncology titled “Cancer precision medicine: State-of-the-art and future directions” at the Nordic Life Science Days this year. The session covered recent advances in cancer immunotherapy and cell- and gene therapies. International experts met to discuss how big data, artificial intelligence and digital solutions are changing drug development, diagnostics and patient care.

 

AI revolutionizing cancer research

Dr. Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells on artificial intelligence and drug discovery.

Mark Swindells, PhD, COO Exscientia, presented how artificial intelligence is changing and driving drug discovery now.

“On average 2 500 compounds need to be synthesized and tested to develop a candidate molecule for clinical trials. We want to apply AI to this artisan area of drug discovery. By reducing the amount of compounds synthesized and tested, we will reduce the overall cost and time to get drugs to market,” Swindells said.

This is a fast moving area and one of the examples of technical innovation Swindells gave was Exscientia’s Active Learning algorithms, which have been benchmarked to work as well as – and in some cases better than – the most successful humans.

In the area of precision oncology, Swindells said: “We are particularly interested in the acquisition of resistance in oncology as an area where our technology could be applied.”

 

Kaisa Helminen, CEO Aiforia, focussed on how the use of artificial intelligence can make image analysis more accurate and efficient.

Dr. Kaisa Helminen on artificial intelligence and image analysis.

Kaisa Helminen on artificial intelligence and image analysis.

“Due to the ageing population, more samples need to be analysed and many countries suffer from serious shortage of pathologists. Many patients are left waiting for their diagnosis and treatment. Manual, visual image analysis is slow and highly subjective. There is a risk for misdiagnosis, which can be dramatic for the patient and costly for the healthcare system.”

Aiforia has built an AI platform that supports medical experts in diagnostics.

“For the first time we are bringing AI tools for doctors’ use, so they can easily create their own AI algorithms,” Helminen explained. “Instead of visually estimating something from samples, we bring accurate, numerical information. AI algorithms are consistent from day to day, week to week, removing the human error component,”

We are bringing AI tools for doctors’ use.

 

Marko Kuisma, Chief Commercial Officer at Kaiku Health, then presented a new digital platform for better patient monitoring, using machine learning tools.

Marko Kuisma on digital tools for better patient monitoring.

Scientific evidence demonstrates that patients who use a digital symptom monitoring solution have an overall survival benefit, experience improved quality of life and go through less visits to the emergency room and hospitalisations.

“The traditional interventions that clinicians make are reactive and come with a delay,” Kuisma explained. “With digital symptom monitoring, interventions are still reactive, but more timely, because you can detect the symptoms early on. When applying machine learning, we make that monitoring proactive and predictive, taking action before symptoms and adverse effects develop.”

“… taking action before symptoms and adverse effects develop.”

 

Identifying gene mutations

Jørn Skibsted Jakobsen Md. Ph.D.,Vice president Science and Medicine TA Urology/Uro-Oncology, Global Clinical Research and Development, Ferring Pharmaceuticals, introduced emerging gene therapies to treat non muscle invasive bladder cancer (NMIBC) bladder cancer.

Jørn Skibsted Jakobsen on a radical new gene therapy.

Jørn Skibsted Jakobsen on a radical new gene therapy.

If a NMIBIC patient doesn’t respond to BCG (a type of immunotherapy drug), a cystectomy is still considered the gold standard treatment. This involves surgically removing all or parts of the urinary bladder, creation of a urinary diversion using a piece of the small intestine and leads to a significantly decreased quality of life for the patient.

Jakobsen introduced a new gene therapy to treat NMIBC patients that are unresponsive to BCG treatment.

“Early research suggests mutations in the surrounding tissue of the tumour potentially predict the subsequent recurrence of the disease,” Jakobsen said. “What if we were able to identify those mutations? And then create a personalised gene-based antibody directed at identified mutations. You could potentially treat patients before the recurring disease.”

“You could potentially treat patients before the recurring disease …”

 

Novel targets and pathways

Carl Borrebaeck, Professor, Lund University, and Kristian Pietras, Professor of Molecular Medicine, Lund University presented L2CancerBridge, a collaboration between the Swiss Centre of Lausanne and Lund University. They are exploring a new model for translational research in breast cancer and tumour immunology.

Carl Borrebaeck introduced L2CancerBridge.

Carl Borrebaeck introduced L2CancerBridge.

The tumor immunology team in Lausanne is focused on identifying novel targets on immunoregulatory cells as T cells and dendritic cells, with the goal of identifying new targets for CAR-T cells. The breast cancer team is focused on studies of tumour cells and their microenvironment with the goal to identify signalling pathways.

“We have been able to find signalling pathways between malignant cells and connective tissue,” Pietras said.

These pathways are crucial for basal-like breast cancer, the most aggressive breast cancer subtype, and block the development of resistance to endocrine therapy. Blocking them allows the use of effective endocrine therapies in cancers that previously did not have any targeted treatment options.

 

Gaspar Taroncher-Oldenburg, PhD; Editor-at-Large, Nature Publishing Group, moderated the session for the second year in a row.

“I have been impressed by how much thought both co-hosts of the event—Jutta Heix from the Oslo Cancer Cluster and Carl Borrebaeck from Lund University—put into weaving together a compelling story that is timely and relevant, both locally and globally.” Taroncher-Oldenburg said.

“Of course, much of the credit for the session being successful goes to the panelists, who again this year captured the audience’s attention through a combination of intriguing presentations and a dynamic roundtable discussion that broadly illustrated different aspects–present and future—of precision medicine in oncology.”

“A compelling story that is timely and relevant, both locally and globally.”

Norway for life science

The biggest key players from the life science industry in Norway came together in Malmö with a common goal: to promote Norwegian life science and build Nordic collaboration.

The life science industry in Norway is booming and collaboration across Nordic borders is of increasing importance. That is why Oslo Cancer Cluster arranged the stand “Norway for Life Science” this year at the Nordic Life Science Days in Malmö.

Among the participants of the stand were governmental institutions, cluster organisations, private companies and academic institutions.

 

Promoting collaboration

On Wednesday, a delegation from the Norwegian Embassy in Sweden attended for an informal meet and greet with the Norwegian life science milieu. This was an excellent opportunity to share knowledge about Nordic cooperation and to strengthen joint activities within the life sciences.

See the video with Kirsten Hammelbo, Minister / Deputy Head of Mission, Norwegian Embassy below.

 

Standing together

The participants of the stand were altogether positive about the initiative and agreed it was a constructive platform to build new relationships. We asked some of the participants the same question: Why is it important for you to be here at NLS days?

“Our main focus here at NLS Days is Nordic collaboration, both public and private, to promote the life science industry.”
Catherine Capdeville, Senior Adviser, Innovation Norway

“It is important to follow what is happening in the industry and in other innovation environments. We are here to nurture our existing contacts and find new partners.”
Morten Egeberg, Administrative leader, UiO Life Science

“Firstly, it is important to show that Norway stands together. This is a significant meeting place. We consider the Nordic countries to be our home market, so we try to present what we do here. It is important for one actor to take responsibility, like Oslo Cancer Cluster does, so that we can collectively gather here.”
Anita Moe Larsen, Head of Communication, Norway Health Tech

“In the long term, we have research projects where we are looking for contacts in the life science industry – both partners of collaboration and potential clients. We are here to promote the centre and let everyone know that we exist.”
Alexandra Patriksson, Senior Adviser, Centre for Digital Life

“We are here to strengthen our collaboration with the best research environments in neuroscience. We want to show that the health industry in Norway is growing and what we can do when we stand together.”
Bjarte Reve, CEO, Nansen Neuroscience Network

“We are happy to contribute to make Norwegian life sciences visible and to show what Norway can offer as a host country, and attract potential investors and collaborating partners in research and innovation. And especially to make visible and be a part of the Norwegian community in this field. It is unusual in Norway that so many different players, both public and private, stand together in one stand – with one common goal.”
Espen Snipstad, Communications Manager, LMI

 

Full list of partners: