"How does light with different wavelength affect the growth of plants?" by Linnéa M. Skille, May Dagny Kollandsrud Hutchings, Tonje Marie Bjørklund Hopen and Elakhiya Dushyanthan won second place in both the Student’s Choice and the Jury’s Choice. Photo: Elisabeth Kirkeng Andersen

Ullern students presented their own research

This article was originally published in Norwegian on the School Collaboration website.

Arranging a poster session may seem like an unusual way to end the school year, but for Ullern’s researcher students it is the perfect way to finish.

The first year of the Researcher Programme at Ullern Upper Secondary School was brought to an end by the students presenting their research projects to the four mentors, the principal, their teachers and co-students. A sunny, warm morning in June the Ullern schoolyard was transformed into a poster session, an activity that normally only takes place at science conferences.

The presentation of their research projects is the “grand final” of the school year for the students on the Researcher Programme, says Monica Flydal Jenstad and Ragni Fet, who are the two teachers in charge of the programme.

“The students have worked on their own experiments related to radiation and made real research posters. This has been a bit challenging, because of the corona pandemic and studying from home during a long period. They were supposed to present their research projects to the four mentors already in April, but this was of course not possible. It is really fun that we managed to do this at all,” says Ragni.

The teachers Ragni Fet and Monica Flydal Jenstad are responsible for the Researcher Programme. They were really impressed by the research projects the students presented during their first poster session. Photo: Elisabeth Kirkeng Andersen

The teachers Ragni Fet and Monica Flydal Jenstad are responsible for the Researcher Programme. They were really impressed by the research projects the students presented during their first poster session. Photo: Elisabeth Kirkeng Andersen

The four mentors that Ragni is referring to is Jónas Einarsson, CEO of Radforsk and founder of Oslo Cancer Cluster and Oslo Cancer Cluster Innovation Park, Øyvind Kongstun Arnesen, consultant in Radforsk and former CEO of Ultimovacs, Simone Mester, cancer researcher at Oslo University Hospital and former student at Ullern Upper Secondary School, and Bjørn Klem, general manager of Oslo Cancer Cluster Incubator and former head of research in Photocure.

Bjørn Klem, general manager of Oslo Cancer Cluster Incubator and former head of research in Photocure, is studying the research posters in depth.

Bjørn Klem, general manager of Oslo Cancer Cluster Incubator and former head of research in Photocure, is studying the research posters in depth.

The mentors’ task is to advise the students during their studies and contribute with guidance, inspiration and experience. The mentors were more than pleased with what was presented to them:

“I tutored the students in February when they were designing the experiments and brainstorming. It was really fun to see the finished results in the poster format. I think everyone reflected well on their own results and it was fun to discuss with them. I am very impressed by the results!” said Simone Mester.

Jónas Einarsson agreed:

“I am impressed by the students’ work in spite of all the complications with the closed school. They explored interesting issues and executed the projects very well.”

Øyvind Kongstun Arnesen believes the students had a great advantage in their experienced teachers, who both have backgrounds in cancer research, when performing their own research projects:

“I think the students were especially good at formulating clear hypotheses. It is obvious they have understood the main reason for this type of research. They have great teachers and clear heads.”

A great success

A total of ten research projects were presented in poster format in the schoolyard. The principal, the science teachers, the mentors and the students walked among the posters, just like at a real science conference, read about the research and asked questions to the research talents.

The teacher Ragni Fet opens the poster session. To her left: the mentors Øyvind Kongstun Arnesen, Jónas Einarsson and Bjørn Klem. In front of her: the nervous students prepared to present. Photo: Elisabeth Kirkeng Andersen.

The teacher Ragni Fet opens the poster session. To her left: the mentors Øyvind Kongstun Arnesen, Jónas Einarsson and Bjørn Klem. In front of her: the nervous students prepared to present. Photo: Elisabeth Kirkeng Andersen.

“The poster session was a success! The students were brilliant. Both the mentors and teachers were impressed. The students’ task was to design and complete an experiment of their choosing related to the topic of radiation and to present the results of the experiment on a poster,” said Ragni Fet.

Two projects were awarded special prizes out of the ten research projects that were presented. The first prize was awarded by a jury consisting of the four mentors and the teachers. The second prize was awarded by the students themselves.

The winners

“Research into plants and microwaves” by Christofer Woxholt, David Venker and Jonathan Løvdal won the Jury’s Choice.

“Research into radiation of yeast” by Alexander Hustad, Alexander Marks and Martin Thormodsrud won Student’s Choice. Photo: Elisabeth Kirkeng Andersen. 

The runner-ups

“How does light with different wavelength affect the growth of plants?” by Linnéa M. Skille, May Dagny Kollandsrud Hutchings, Tonje Marie Bjørklund Hopen and Elakhiya Dushyanthan won second place in both the Student’s Choice and the Jury’s Choice. Photo: Elisabeth Kirkeng Andersen

“Can you fry an egg with ultrasound?” by Sebastian Heuser and Victor Garman won a shared second place in the Student’s Choice category. Sebastian was unfortunately not present for the poster session. Photo: Elisabeth Kirkeng Andersen 

All research posters

“Water’s ability to slow gamma radiation” by Nikita Upadhyaya, Henrikke Thrane Steen Røkke and Lara Barazangy. Lara was not present when the picture was taken. Photo: Elisabeth Kirkeng Andersen

“The effect of different amounts of radiation on yeast cells” by Jakub Michalowski, August André Lukkassen and Emil Gråbøl-Undersrud. Photo: Elisabeth Kirkeng Andersen

“Radiation of e-coli” by Peder Hellesylt, Carl Thagaard, Fredrik Røren and Felix Gundersen. Photo: Elisabeth Kirkeng Andersen

“The effect of different types of radioactive radiation on bacteria” by Isha Mohal and Nada Darwiche. Photo: Elisabeth Kirkeng Andersen

“Does microwave radiation affect the growth of seeds?” by Anine Sundnes, Julia Beatrice Braaten and Tia Sauthon. Tia was not present when the photo was taken. Photo: Elisabeth Kirkeng Andersen

“Radiation of plants” by Iselin Langås Sunde, Andrea Øfstaas, Henrik E. Corneliussen and Fredrik Hansteen. Photo: Elisabeth Kirkeng Andersen

The mentors together with the winning group. Photo: Elisabeth Kirkeng Andersen

The mentors together with the winning group. Photo: Elisabeth Kirkeng Andersen

The mentors together with the group that got second place in Jury’s Choice and Student’s Choice. Photo: Elisabeth Kirkeng Andersen.

The mentors together with the group that got second place in Jury’s Choice and Student’s Choice. Photo: Elisabeth Kirkeng Andersen.


More about the Researcher Programme

The Researcher Programme (Forskerlinja) is a unique opportunity for motivated and talented aspiring researchers. The students receive a tailored three-year educational programme with a specialisation in the natural sciences. The academic year 2019/2020 is the first year that Ullern Upper Secondary School has run this programme, which offers a first insight into biomedical research, technology and innovation. Teachers and researchers give the students a taste of how world-class research is done. The students learn in completely new ways in the Oslo Cancer Cluster Innovation Park, which Ullern Upper Secondary School is a part of.

The students have through the years participated in the unique collaboration with Oslo Cancer Cluster, which offers them exciting work placements with researchers, companies and laboratories associated with the cluster and the Oslo Cancer Cluster Innovation Park. Because of the corona pandemic, the students have unfortunately missed out on many of the planned activities.

The students still have two years left of the programme and they will present two more research projects, but first, they will enjoy a well-deserved summer holiday.

Hva er viktigst, hytta eller helsen?

Ketil Widerberg, daglig leder, OCC

This opinion piece was originally published in Aftenposten on 25 June 2020. Scroll down for a version in English.

Deaktiver Smittestopp-appen med en gang – med god samvittighet, skriver Joacim Lund. Han bør heller ha dårlig samvittighet.

Smittestopp-appen samler inn bevegelsesmønstre for å spore spredningen av covid-19. Personvern står høyt, og derfor bør vi ta det alvorlig når Datatilsynet protesterer mot appens datalagring og datahåndtering. Ved stans av datainnsamling brukte kun 11 prosent av Norges befolkning den. Det er langt under de nødvendige 50 prosent for å få en reell sykdomsoversikt.

Dette står i kontrast til det at store deler av oss bruker Google Maps, som også samler inn lokasjonsdata, så vi finner køfri vei til hytta.

Hva er viktigst, hytta eller helsen? Kan vi kombinere godt personvern og tillit til myndighetene for å se effekten av og begrense tiltakene mot covid-19? Folkehelseinstituttet og Simula gjorde en fantastisk jobb med Smittestopp. Appen bør utvikles med bedre sikkerhet og anonymisering, men det å ønske Smittestopp død er feil. Å samle inn og dele data for vår felles helse er viktig, i umiddelbare kriser som covid-19 og mot samfunnsutfordringer som kreft.

Smittestopp er død. Lenge leve Smittestopp.

What is more important: your holiday cabin or your health?

Deactivate the app Smittestopp at once – with good conscience, Joacim Lund writes in Aftenposten. This should rather give him a bad conscience.

The app Smittestopp collects people’s movement patterns to track the spread of covid-19. Privacy is important, and that is why we should take it seriously when The Norwegian Data Protection Authority (DPA) protests against the app’s storage and handling of data. Only 11 percent of Norway’s population used the app, when the data collection was stopped. That is far from the necessary 50 percent to get a real overview of the spread of the disease.

This is in contrast to the fact that many of us use Google Maps, which is also collecting location data, so that we can find the quickest way to our holiday cabins.

What is more important, the holiday cabin or our health? Can we combine good privacy and trust in government to see the effect of and limit the measures against covid-19? The Norwegian Institute of Public Health and Simula did a fantastic job with Smittestopp. The app should be developed with better security and anonymization, but to wish Smittestopp dead is wrong. To gather and share data for our common health is important, in immediate crises like covid-19 and against societal challenges like cancer.

Smittestopp is dead. Long live Smittestopp.

Torbjørn Furuseth is the Chief Financial Officer of Targovax, a Norwegian company developing oncolytic viruses against cancer. Photo: Targovax

Targovax releases 12-month clinical data

Our member Targovax has released 12-month data from the company’s clinical study of the oncolytic virus ONCOS-102 in patients with malignant pleural mesothelioma.

Targovax is a member of Oslo Cancer Cluster that develops oncolytic viruses to treat solid cancer tumours. The company’s lead product is called ONCOS-102 and has been engineered to selectively infect cancer cells and activate the immune system to fight cancer.

An oncolytic virus is a virus that preferentially infects and kills cancer cells.

The oncolytic virus ONCOS-102 is currently being tested in a phase I/II clinical trial with the aim to establish its safety and efficacy. ONCOS-102 is tested in combination with the standard-of-care chemotherapy on patients with mesothelioma.

The company released 12-month data from the clinical trial this week, which powerfully demonstrate a broad immune activation linked to clinical benefit.

Watch the presentation with Magnus Jäderberg, Chief Medical Officer at Targovax:

What is mesothelioma?

Malignant mesothelioma is a type of cancer that occurs in the thin layer of tissue that covers the majority of your internal organs (mesothelium). Mesothelioma is an aggressive and deadly form of cancer.

Mesothelioma is a difficult cancer disease to diagnose and treat. Only 10% of all patients are eligible for surgery. Many of the remaining patients receive chemotherapy. Radiotherapy may be used in some cases for palliative reasons. There have been no new break-through treatments with any significant impact during the last 15 years.

Immunotherapy has started to make an inroad on the disease. There are a couple of checkpoint inhibitor trials for patients with second-line disease. For patients with first-line disease, there are currently no immunotherapy options.

Checkpoint inhibitor therapy is a form of cancer immunotherapy, a type of therapy that uses substances to stimulate or suppress the immune system to help the body fight cancer.

The 12-month data

Targovax has presented data from the company’s phase I/II trial focusing on safety on combining ONCOS-102 with chemotherapy. They have looked at both first-line and second-line patients being treated with standard-of-care chemotherapy in combination with ONCOS-12.

The study includes a control group of 11 patients who have received chemotherapy only and an experimental group of 14 patients who received the combination of chemotherapy and ONCOS-102.

The 12-month results show that ONCOS-102 drives broad and powerful immune activation across key parameters, including innate immune responses, adaptive immune responses and remodelling of the tumour microenvironment.

The tumor microenvironment has profound impacts on cancer progression and remodelling of the tumour microenvironment has emerged as a strategy to facilitate cancer therapy.

The analysed genes show that there is a clear difference in ONCOS-102-induced immune activation compared to chemotherapy only. The genes also show there is a clear association between the powerful immune activation and improved clinical outcome.

The data shows that ONCOS-102 drives the infiltration of CD8+ T cells into the tumour, which is associated with better outcomes.

Targovax now plans to continue the clinical study for first-line patients. The company sees a strong rationale for combining ONCOS-102 with checkpoint inhibitor and standard-of-care chemotherapy.

On Tuesday, Targovax also revealed they will collaborate with our member pharmaceutical company MSD (known as Merck in the US) to evaluate the immunotherapy drug Keytruda in combination with ONCOS-102.

Find out more …

Researcher Anette Weyergang shows the PCI technology to Norwegian Prime Minister Erna Solberg.

Grants awarded for PDT/PCI research

Erna Solberg visits PCI Biotech

Radforsk has granted seven research projects a total amount of MNOK 1,25 to further develop exciting research projects within photodynamic treatment and photochemical internalization.

Radforsk is an evergreen investor focusing on companies that develop cancer treatments.

“Radforsk has ploughed NOK 200 million of its profit back into cancer research at Oslo University Hospital. Of these, NOK 25 million, have gone to research in PDT/PCI. This year we grant seven projects a total of NOK 1,25 million,” says Jónas Einarsson, CEO of Radforsk.

Radforsk had received a total of seven applications by the deadline on 1 March. All projects were allocated funding.

The applications have been assessed by external experts.

The researchers who have received funding for PDT/PCI research in 2020 are:

  • Anette Weyergang is granted NOK 300 000 to the project: “Photochemical Internalization: Development of a novel tumor-specific protein toxin to defeat aggressive and resistant cancers”
  • Beáta Grallert is granted NOK 100 000 for the project: “Cancer-specific bioluminescence-PDT”
  • Judith Jing Wen Wong is granted NOK 100 000 to the project “Light-enhanced targeting of immunosuppressive tumor cells”
  • Kirsten Sandvig and Tore Geir Iversen are granted NOK 200.000 to the project “Drug-loaded Photosensitizer-Chitoscan Nanoparticles for cominatorial Chemo- and Photodynamic cancer therapy”
  • Mouldy Sioud is granted NOK 200.00 to the project “Antibody- and peptide-targeted photodynamic therapy to kill cancer cells”
  • Qian Peng and Henry Hirschberg are granted NOK 50 500 to the project “Improved therapy of brain tumors by PDT induced anti-tumor immune responses”
  • Qian Peng is granted 300 000 to the project “Photopheresis of patients with Crohn’s disease using 5-aminolevulinic acid”

Read about the projects that were funded in 2019 here.



Cancer research in the field of photodynamic therapy and photochemical internalisation studies the use of light in direct cancer treatment in combination with drugs, or to deliver drugs that can treat cancer to cells or organs.


Since its formation in 1986, Radforsk has generated NOK 600 million in fund assets and channelled NOK 200 million to cancer research, based on a loan of NOK 1 million in equity back in 1986.

During this period, NOK 200 million have found its way back to the researchers whose ideas Radforsk has helped to commercialise.

NOK 25 million have gone to research in photodynamic therapy (PDT) and photochemical internalisation (PCI). In total, NOK 40 million will be awarded to this research.

Parts of the GLIMT team together with Arif and Unge Ferrari at Rikshospitalet. Photo: GLIMT UB

Helping teens in the hospital

GLIMT UB, Arif and Unge Ferrari at Rikshospitalet, Oslo.

This article was originally written in Norwegian and published on our School Collaboration website.

Ullern students helped teenagers in the hospital while learning how to become entrepreneurs.

GLIMT UB, a youth company at Ullern Upper Secondary School, wants to give chronically ill teenagers the activities they need while they are in hospital. The pizza night with the famous Norwegian rappers Arif and Unge Ferrari was a big success, but then the corona pandemic put a temporary stop to the newly started company.

“GLIMT offers teens in hospital different activities, which are planned and carried out by other teens. We offer an arrangement for the hospitals, which is better adapted and more resource-efficient.”

Teenagers who stay in the hospital for long periods of time are often isolated and have few other fulfilling activities in their everyday lives. GLIMT UB decided to do something about this and thought of the idea to arrange pizza nights at the hospital, inviting famous people as guests for the young patients.

The concept was a success and the pizza night with Arif and Unge Ferrari at Rikshospitalet in January 2020 attracted five times as many young patients as other activities. Arif and Unge Ferrari hung out with the teens who are staying in the hospital because of different illnesses. The night was spent eating pizza, playing cards and beading.

“The mother of one of the patients said that we need to come back and arrange this more times. She insisted that this was an important optional activity because it was planned by teens for teens,” said Tyra Kristoffersen.

Tyra has worked in GLIMT UB, together with the other Ullern students Andreas Bjurstrøm, Carl Ruge, Miriam Idsøe and Alexander Floskjer, during the last school year.

Young patients are isolated

“During the age when you have the greatest need to be social and gain new experiences, one group is getting left out of the traditional social framework. Across Norway, there are children and young adults staying in hospitals and, in spite of both internal and external measures, many end up being isolated from the rest of society. The age group 13 to 19 is a very challenging group to reach and they lack adequate activities. To improve the health service in Norway, we need better adapted activities for this age group.”

This quote is from GLIMT UB’s business plan, which awarded the company first place in the category Best Business Plan in the Oslo Championship for Young Entrepreneurs.

The team behind the youth company GLIMT UB gathered at Ullern Upper Secondary School. Photo: GLIMT UB’s Facebook page

The team behind the youth company GLIMT UB gathered at Ullern Upper Secondary School. Photo: GLIMT UB’s Facebook page

The concept of GLIMT is based on young, famous people’s motivation to help young people in a challenging situation, without getting paid for their time.

“If we had paid the celebrities to come, this wouldn’t have worked because the hospitals have such a limited budget. The famous people still benefit from positive mentions in social media and can use the activity to promote themselves if they wish,” Tyra said.

Before the corona pandemic, GLIMT UB had planned several pizza nights at Rikshospitalet, since the first one was such a success.

“We have been in touch with several celebrities, such as Herman Flesvig, Ulrikke Falck and Tix, who were all very positive to participate. Unfortunately, the corona pandemic forced visitation restrictions in place at hospitals in Norway, so we couldn’t arrange more pizza nights than the one with Arif and Unge Ferrari,” Tyra said.

The students behind GLIMT UB still think they have learned a lot.

A valuable mentor

Entrepreneurship is one of many subjects that the students at Ullern Upper Secondary School can choose in their second or third year. The students learn how to start a company and the theory behind what makes some businesses succeed and why other businesses fail.

The students also need to establish and run their own youth company during the course.

The team behind GLIMT UB considered an idea about redesign, but scrapped it when they realised that this was a concept that many youth companies were interested in.

“We started thinking about what is close to our school and of course the hospital is right next door. We discussed with our entrepreneurship teacher Karin if we could think of something in relation to that. We quickly found out that teens in the hospital don’t have many activities. The younger kids get visits from hospital clowns and their own playroom,” Tyra said.

At the Norwegian Radium Hospital, there are however not many young adults admitted. Most teenage patients are at Rikshospitalet and Ullevål.

“Through our mentor Bente, we got in touch with the activity leader for teenagers at Rikshospitalet and Ullevål. He liked our idea a lot, and other people were also positive, so we just had to keep working,” Tyra said.

Mentor Bente Prestegård and the students Andreas Bjurstrøm, Carl Ruge, Tyra Kristoffersen and Miriam Idsøe, standing outside Ullern Upper Secondary School. Alexander Flåskjer is also a part of the GLIMT team, but was unfortunately not present on the day the image was taken. Photo: Elisabeth Kirkeng Andersen

Mentor Bente Prestegård and the students Andreas Bjurstrøm, Carl Ruge, Tyra Kristoffersen and Miriam Idsøe, standing outside Ullern Upper Secondary School. Alexander Flåskjer is also a part of the GLIMT team, but was unfortunately not present on the day the image was taken. Photo: Elisabeth Kirkeng Andersen

Bente, that Tyra mentioned, is Bente Prestegård. She is a project manager in Oslo Cancer Cluster and one of her many projects is the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster.

“I have had a few meetings with the students behind GLIMT. I have specially advised them about how to relate to patients and staff in the hospital, and I helped them with pitch training in advance of the Oslo Championship in Young Entrepreneurship,” said Prestegård.

Prestegård thinks that it is a lot of fun to be a mentor for GLIMT and she is impressed about how driven the students have been and how much they have accomplished, even though the corona pandemic but a sudden stop to the company’s activities in March.

The students also learned a lot from Bente’s advice and are grateful for all the coaching they have received while running the company.

“Bente introduced us to several key people at Oslo University Hospital, which was very valuable for us. She is also very knowledgeable about the economy and has given us a lot of good input on that aspect too,” Tyra said.

Learning in practice

It is June now and homeschooling is fortunately over, but there are still strict visitation rules at Norwegian hospitals because of the pandemic. GLIMT UB is dissolved since the school year is over and the students have gained a sense of what it is like to be a founder.

“It has been fun and educational. We would, of course, had wanted to do more for these teens, but hopefully, the hospitals across the country can be inspired by our idea,” said Carl, the company’s interim manager.

One thing that has been challenging for GLIMT is to find a way to make money out of the idea since the hospitals have limited resources.

“We still had NOK 7 000 left in our budget this year, which we have donated to Oslo University Hospital,” said Tyra.

Sign up to our monthly newsletter


Welcome Note by the Organising Partners from Europe and North America opening the 9th International Cancer Cluster Showcase

International Cancer Cluster Showcase 2020

The 9th International Cancer Cluster Showcase has been launched on June 8th as a virtual event presenting 20 early-stage oncology companies.

For the first time, the annual International Cancer Cluster Showcase (ICCS) is presented in a digital format. Although we are missing the lively networking elements this year, there is a clear advantage: participants from around the globe can view the full program or selected presentations whenever suitable until July 8th – independent of time-zones and location. The record-high participation with about 400 registrations confirms that this flexible format offers an interesting opportunity to meet new companies in times when travelling is limited.

The organising partners from North America and Europe have jointly selected 20 emerging oncology companies from 8 countries advancing novel therapeutic, diagnostic and digital solutions. The CEOs of this outstanding group of early-stage companies present their latest innovations and partnering opportunities in four thematic sessions.

“We hope that this 9th International Cancer Cluster Showcase again creates novel collaboration opportunities and contacts for presenters and participants and stimulates relevant discussions.”

Jutta Heix, Head of International Affairs, Oslo Cancer Cluster.

A joint welcome from the organising partners opens the first session with the theme Targeting novel mechanisms. Our member EXACT Therapeutics is one of the companies selected for this session. CEO Rafiq Hasan introduces the company’s unique Acoustic Cluster Therapy for ultrasound-mediated, targeted therapeutic enhancement.

“It was important for EXACT Therapeutics to participate at ICCS as this is one of the leading opportunities for us to communicate progress with our innovative Acoustic Cluster Therapy (ACT) platform in oncology to key stakeholders and potential partners.

“We are impressed by the virtual format and the agility with which the in-person meeting was transformed to a digital platform. This ensures that the objectives of the meetings are achieved despite the challenges of the current situation.”

Rafiq Hasan, CEO, EXACT Therapeutics

CEO Rafiq Hasan, EXACT Therapeutics

Rafiq Hasan, CEO of EXACT therapeutics, is one of the presenters at ICCS 2020.

The theme of the second session is Immuno-Oncology and Cell therapy. Here the Oslo Cancer Cluster member Nextera introduces their NextCore technology and relevant applications in oncology.

“It was important for Nextera to present our unique drug and target discovery platform at the stage we are now, since we believe we can enable immuno-oncology therapies to new levels both from efficacy and safety points of view.

“The digital format fosters a great flexibility as well as the message reaches a larger audience.”

Ole Henrik Brekke, Chief Business Officer, Nextera

Geir Åge Løset, CEO of Nextera, presented at ICCS 2020.

Geir Åge Løset, CEO of Nextera, is one of the presenters at ICCS 2020.

The third session has the theme Immuno-Oncology, oncolytic viruses and vaccines, featuring companies from the US, UK and France showcasing their technologies and lead candidates.

As final Nordic company, our member Kaiku Health presents their platform for personalized digital health interventions in the fourth session titled Diagnostics and digital health interventions.

“ICCS is a good platform to reach like-minded innovators in oncology interested in making cancer care more personalised. We were happy to have the opportunity to go virtual during these exceptional times.”

Lauri Sippola, CEO and Co-Founder, Kaiku Health

Lauri Sippola, CEO of Kaiku Health, is one of the presenters at ICCS 2020.

Lauri Sippola, CEO of Kaiku Health, is one of the presenters at ICCS 2020.

The Virtual International Cancer Cluster Showcase is available online, via the official ICCS website, until 8 July 2020.

Details of all the presenters can be found in the ICCS 2020 event guide.

We kindly thank the sponsors and partners BIO, DNB, Precision for Medicine and Takeda for their ongoing support and program contribution.


Organising partners:


Rafiq Hasan has been appointed CEO of EXACT Therapeutics, a Norwegian company with a new technology that can enhance the effect of chemotherapy.

Combating cancer with ultrasound

CEO Rafiq Hasan, EXACT Therapeutics

Our member EXACT Therapeutics gains pharma veteran Rafiq Hasan as CEO, reveals company name change and reports strong progress in first clinical trial.

Our member EXACT Therapeutics, formerly known as Phoenix Solutions, is a Norwegian biotech company developing an innovative platform technology that enables precision therapeutic targeting using ultrasound, with an initial focus in oncology.

The method is called Acoustic Cluster Therapy (ACT®) and has potential utility across multiple therapeutic areas. In oncology, the effect of chemotherapy is amplified through biomechanical effects induced by ultrasound insonation of microbubbles transiently trapped in the microvasculature.

In other words, ACT® is a method to enhance the delivery of chemotherapy with greater precision exactly to the target site of action. Patients receive an intravenous injection of ACT® comprising microbubbles and microdroplets, which are activated at the location of the tumour using conventional diagnostic ultrasound. This creates large bubbles that apply transient and controlled pressure to the vascular wall enabling greater extravasation of the co-administered chemotherapeutic. In essence, this means that more chemotherapy is “pumped” into the tumour. The potential is that chemotherapy can achieve greater therapeutic efficacy using standard of care chemotherapy, resulting in better clinical outcomes for patients living with cancer.

Watch the video below to learn more about the technology in detail.

Pharma veteran appointed CEO

EXACT Therapeutics recently appointed Rafiq Hasan as CEO to lead the company on its journey to commercialise ACT. Rafiq Hasan is a seasoned veteran of the pharma business and has held several top positions in Bayer and Novartis.

Dr Hasan commented: “There has been tremendous progress in the last 8 years within the field of microbubbles and sonoporation, driven forward by ACT® and EXACT Therapeutics. Through its targeted delivery, ACT® has the potential to enhance therapeutic efficacy of a multitude of products across numerous therapeutic areas. This exciting science with the potential to have a transformative impact on medicine and patients, and I could not pass up this opportunity to lead EXACT Therapeutics into its next phase. I am impressed with the preclinical data where ACT® shows efficacy across a range of drugs and disease models, whilst the clinical development is already underway with the Royal Marsden Hospital/the Institute of Cancer Research.”

Clinical trial ongoing

EXACT Therapeutics is now reporting strong progress in an ongoing clinical trial, which started at the Royal Marsden Hospital in September 2019. The clinical trial is investigating ACT® in combination with standard of care chemotherapy for treating colorectal and pancreatic cancers.

Watch the video from BBC News of the first patient to test the new treatment.

Visit the original homepage to learn more about EXACT Therapeutics.

Sign up to our monthly newsletter

Hakan Köksal has researched new designs of cells to improve cancer treatment. He defended his PhD via a digital platform from Oslo Cancer Cluster Incubator, due to corona restrictions.

Designing cells to fight cancer

How can new designs of T cells improve cell therapy for cancer patients?

Hakan Köksal defended his PhD digitally from Oslo Cancer Cluster Incubator.

Hakan Köksal defended his PhD digitally from Oslo Cancer Cluster Incubator.

This was the question Hakan Köksal attempted to answer in his PhD thesis, which he defended from the Oslo Cancer Cluster Incubator via a digital platform on Thursday 28 May 2020.

Köksal first arrived at Oslo Cancer Cluster Incubator to begin his PhD in October 2016 for the Department of Cellular Therapy, belonging to Oslo University Hospital. Three and a half years later, he is finally finished and has made a discovery that could potentially help cancer patients that are not responding to standard cell therapies.

“Essentially, what we are doing is called adoptive T cell therapy. We try to manufacture designs of chimeric antigen receptors to redirect T cells against cancer cells,” Köksal explained.

Cell therapy is an exciting, new area in cancer research and is a type of immunotherapy. This means that the patient’s immune system is changed in order to recognise and destroy the cancer cells in the body. CAR T cell therapy (CAR is short for chimeric antigen receptor) specifically involves collecting cells from the patient’s blood and changing them in the laboratory.

“We collect T cells, or lymphocytes, from the patients and engineer them so they can detect cancerous cells. Afterwards, they can be reinfused in the patient to destroy the cancer cells.” Hakan Köksal

Novel designs and new approaches

Current CAR T cell therapies have proved successful against several haematological cancers (blood cancers). However, the long-term clinical effects are quite limited and several barriers remain to cure all cancers with cell therapy. One problem Köksal looked at is when lymphoma patients treated with CD19 CAR T therapy relapse with CD19 negative lymphoma.

“We come up with alternative designs and approaches that may have an improved therapeutic effect, a lowered toxicity and improved survival in the body,” Köksal said. “The study we conducted can potentially be used as a standalone therapy or it can be complementary to reduce relapse.”

Standard CAR T therapies use antibody fragments as recognition units to detect cancer cells. In his thesis, Köksal has used a T cell receptor part, which is a different recognition domain, to increase the number of the targetable markers on cancer cells.

“Usually CAR T therapies can only detect proteins on the surface of the cell, but this new design can technically also recognise proteins inside the cell.” Hakan Köksal

Köksal stresses that we cannot know the clinical efficacy of the study before testing it in humans. The furthest they have tested is in mice, which is still a completely different organism from humans.

Read more about the research in this article: “The first Norwegian CAR”

Presenting during corona

Köksal finished his thesis in August 2019 but has not had the opportunity to defend it until now. Due to the ongoing corona situation, he could not present the trial lecture and defence in a filled auditorium but had to make do with an empty room and a laptop.

“It’s completely different. Normally, I would be standing on a stage and looking the audience in the eyes to see if I do well or bad. Now, I couldn’t see the audience, because they couldn’t share their video screens. I could only see my opponents,” Köksal explained.

In March, the corona pandemic affected the researchers in the Incubator too, because there were difficulties getting the necessary deliveries as companies worldwide had limited personnel. The laboratory had to restrict the number of people coming in and meeting rooms were temporarily converted to offices to avoid shared office space. The Incubator never closed completely and stayed open with extra sanitation procedures in place, so that the important research could go on.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

A collaborative effort

Köksal emphasised that the research behind his PhD thesis has been a team effort. He is thankful to his supervisors at Oslo University Hospital, Else Marit Inderberg, Sebastien Wälchli and June Helene Myklebust, for helping him and giving important guidance during his projects.

It has also meant a lot for him to be a part of the Oslo Cancer Cluster Incubator, Innovation Park and the Oslo Cancer Cluster ecosystem.

“It is good to be in such a translational building. You have one part that has an arm in the clinic and at the same time you have pre-clinical research going on side-by-side with the private companies. You have different niches and you can meet a lot of people with different backgrounds and interests. It gives you new perspectives,” Köksal said.

Köksal thinks the Incubator is a calm, relaxing work environment and not super busy like many other research buildings, where there is a lot of competition going on. In the Incubator, the researchers are united by the common goal to accelerate cancer treatments.

“I feel happy when I see an announcement that a company has reached a new milestone, because it means someone is making an impact and a difference out there.” Hakan Köksal

Köksal will now begin a postdoctoral position and continue his ongoing research projects. He aims to work on the development of cell therapies and hopes to make new breakthroughs on the treatment of solid cancers in the future.

Sign up to our monthly newsletter


From left to right: Baldur Sveinbjørnsson (Lytix Biopharma), Daniel Heinrich (AHUS), Hege Edvardsen (LMI) and Ketil Widerberg (Oslo Cancer Cluster) discussed how clinical trials can become an integrated part of cancer treatment in Norway.

Integrating clinical trials in cancer treatment

Fremtidens Kreftbehandling: Kreft og kliniske studier. Et veikart for bedre kreftbehandling.

How can we make clinical trials an integrated part of cancer treatment in Norway so that more patients can gain access to new and better treatments?

We arranged a webinar with key experts and politicians to answer this question. Watch the entire webinar on Youtube:

“The number of patients that get considered to participate in clinical studies in Norway is too low and it is difficult to arrange clinical studies across borders in the Nordics. This is unacceptable, but how can we change it?” This is how the moderator Ketil Widerberg, general manager of Oslo Cancer Cluster, set the scene for our first webinar, which was live-streamed from Kreftforeningens Vitensenter in Oslo.

A visionary plan

The Norwegian Ministry of Health and Care Services has said that clinical studies should be an integrated part of patient treatment in Norway. This is especially relevant when it comes to the advent of new cancer treatments and the fact that the number of clinical trials is decreasing in Norway. The Ministry is now working on a Clinical Studies Action Plan to be completed in 2020.

Maiken Engelstad, Deputy Director General of The Department of Specialist Health Care Services, gave a presentation on its contents so far. An overarching goal is to get more, useful clinical studies to Norway, so that more patients can receive better treatments, and ultimately achieve a more efficient health service.

Engelstad mentioned many important aspects to achieve this. For example, to create more collaborations between the industry and public sector, with NorCRIN as a “one-stop-shop” for clinical studies. Engelstad stressed that Norway needs to build capacity, so that feasibility, recruitment and approval is accelerated. Engelstad also talked about building competency, by including clinical research, gene therapy and artificial intelligence in education. Moreover, Engelstad wants to increase the multitude of different studies, catering to both big and small patient groups, vulnerable patients, assessing both new and established treatments, and conducting the trials both locally, nationally and internationally. 

“We need to look to Norway’s advantages, such as real world data, which can be used from designing the drugs to implementing new therapies in the clinic.” Maiken Engelstad

Engelstad said that there needs to be a national and regional framework in place to achieve this, with regulations, financing, infrastructure and competency. Engelstad finally highlighted that one of the biggest challenges is to achieve a cultural change towards conducting clinical trials in Norway.

The tangle of rules

The legal framework that regulates clinical studies in the Nordics is very difficult to navigate for patients who wish to participate in and for companies that wish to arrange clinical trials. Wenche Reed, Head of Research in The Section for Research, Innovation and Education at Oslo University Hospital, talked about how complicated it is to interpret the regulations. 

“There are many laws to consider when conducting clinical studies. It is not easy to navigate the legal landscape – not even for lawyers!” Wenche Reed

Reed explained that the advent of personalized medicine in cancer is challenging the division between patient treatment and clinical research. Moreover, the ethical and legal framework for handling big data is being challenged, because of new developments using artificial intelligence in diagnostics.

Tearing down the barriers

The introductory presentations were followed by a lively panel discussion, divided into three sections. The first section included a video message from Tone Skår, project manager in VIS Innovation and founder of the MED.hjelper project and #SpørOmKliniskeStudier social media movement. Skår emphasised the importance of informing patients of the possibility of participating in trials and creating incentives for doctors and hospitals to run the trials.

Sigrid Bratlie, Special Adviser in The Norwegian Cancer Society, commented that a cultural change is needed. Bratlie said we need to look at concrete cases to learn how to conduct successful clinical studies in cancer personalised medicine.

Bratlie highlighted that Norway has world-class cancer research milieus, especially in cell therapy, but the total number of clinical trials is dwindling. Europe risks falling far behind the US and China, because of the complicated legal framework.

“The Biotechnology Act is just one small piece of the puzzle. Soon there will be a hearing for the Genetechnology Act. We need to look at the bigger picture and how the different laws interact.” Sigrid Bratlie

The second part of the panel conversation turned to both clinicians and industry for their perspectives. Daniel Heinrich, Senior Consultant Oncologist at Akershus University Hospital and Head of The Norwegian Oncology Association, wants to offer his patients the opportunity to try new treatments, which potentially can be better than the standard treatment. Heinrich highlighted that it is difficult for patients that need to travel to different hospitals and private clinics for testing because the hospitals lack capacity. He said that the directives need to come from above, from hospital management, the Directorate of Health and the politicians.

“It is almost impossible to include patients in studies in other countries now. Often it is difficult to understand why!” Daniel Heinrich

Baldur Sveinbjørnsson, Chief Scientific Officer in Norwegian cancer start-up Lytix Biopharma, has tried to arrange a clinical trial in Norway, but found that it was better to conduct it from a hospital in Copenhagen. When patient recruitment was too slow and costs were mounting every day, Sveinbjørnsson travelled around the Nordics to attract patients. There was great interest, but the differing regulations and processes in the Nordic countries put a stop to recruitment.

“We have started looking towards the US and filed an application to the authorities to conduct our next clinical study there.” Baldur Sveinbjørnsson

Hege Edvardsen, senior adviser in Legemiddelindustrien (LMI), thinks Norwegian companies should be able to conduct their trials in Norway. Edvardsen said we need to establish a “one-stop-shop” for clinical studies in Norway. Edvardsen said that the pharmaceutical industry often turns to the most successful cancer centres and hospitals when placing their clinical trials.

“Dedicated enthusiasts are the ones running the clinical studies, but we need targeted financing, so the people doing the work are acknowledged.” Hege Edvardsen

The final part of the panel discussion included two politicians’ visionary perspectives for the future.

Marianne Synnes Emblemsvåg, politician for The Conservative Party of Norway – Høyre, said she was touched by the ambitious plans in the Action Plan. Emblemsvåg commented that she is an impatient person, but that the bureaucratic process takes time to change.

“We need to market Norway in a way that makes us attractive for clinical trials.” Marianne Synnes Emblemsvåg

Emblemsvåg commented that there are many exciting developments considering artificial intelligence and diagnosing cancer, but that they come with some very challenging ethical considerations.

Tuva Moflag, politician for The Labour Party of Norway – Arbeiderpartiet, agreed that things take time to change. Moflag emphasised that part of the political work is to “clean up” some of the bureaucratic mess and to remove the legal barriers.

“We should have high ambitions for clinical studies, considering that we are a rich country and should assume responsibility for our patients.” Tuva Moflag

Moflag also stressed that there needs to be infrastructure, personnel and financing to complete it. Creating a culture of innovation, so that medical personnel feel they are part of something bigger than themselves.

The webinar ended with some final comments from Engelstad, who had been listening and taking diligent notes to bring with her in her work with the Action Plan going forward.

We want to direct a special thank you to all the meeting participants, to the organising partners and to everyone who followed the live stream.

Our next meeting in this series will take place this fall. More details will be published on our website closer to the event.


Event organisers:




Sign up to our monthly newsletter


Per Håvard Kleven is the founder of Kongsberg Beam Technology, a company that develops technology for proton therapy centres, which will benefit cancer patients.

Improving proton therapy for cancer patients

Per Håvard Kleven, founder of Kongsberg Beam Technology

Kongsberg Beam Technology has entered an agreement with the Research Council of Norway to develop precision technology for proton therapy centres.

The grant will secure the company a total of NOK 23 million in support to develop a technology that improves the accuracy of proton therapy in combating cancer.

Many cancer patients receive radiotherapy treatment to destroy the cancer cells. The big negative side-effect is that healthy cells around the tumour are also damaged.

Proton therapy is more precise, which means that there is less damage to healthy tissue and organs surrounding the cancer. This reduces the unwanted side effects and improves the quality of life for the patient.

Kongsberg Beam Technology has developed a technology that increases the accuracy of proton therapy, even when the patient or their organs may be moving, for example while their lungs are breathing.

The technology creates a digital twin, a virtual copy of the patient. The digital twin gives a dynamic and predictive real-time image while the tumour is treated with proton therapy. This makes the treatment even more exact than before.

The system is called MAMA-K, which is short for Multi-Array Multi-Axis Cancer Combat Machine. The machine treats the tumour with several proton beams at the same time and is especially adapted for organs in motion. The system can be plugged into both current and new proton machines.

“The MAMA-K system will be clinically beneficial and yield significantly improved treatment effects to patients compared to state-of-the-art systems and procedures,” said Karsten Rydén-Eilertsen, Ph.D. Head of Section, Department of Medical Physics at Oslo University Hospital.

Oslo Cancer Cluster Incubator has assisted Kongsberg Beam Technology with business development advice and help in pursuing funding opportunities.

“The support from Oslo Cancer Cluster Incubator has been vital in reaching where we are today,” says Per Håvard Kleven, the founder of Kongsberg Beam Technology.

Semcon is another important collaboration partner, who is responsible for the technical and digital development of the project.

The first phase of the project will last until 2022. This has begun with securing the proof-of-concept, which means that Kongsberg Beam Technology has demonstrated that the concept has a verified practical potential. Now, a prototype is in development, which will be used to test the system. During phase 2 of the project, the system will be tested and verified until 2024 to prove that it works.

Norway currently does not have any proton therapy centres, but two are already in the planning stages. One will be in Oslo, at the Norwegian Radium Hospital, and one in Bergen, at Haukeland University Hospital. The first Norwegian cancer patients will be treated with proton therapy in 2024.

The MAMA-K system that Kongsberg Beam Technology are developing will be tested at The Norwegian Radium Hospital, a part of Oslo University Hospital.

Other collaboration partners are the University of Oslo and Onsagers.

Sign up to our monthly newsletter