Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity are happy to combine forces with NEC Corporation to strengthen their machine learning software in the fight against cancer.

Norwegian AI-based cancer research gets a boost

Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity

The Japanese tech giant NEC Corporation has acquired OncoImmunity AS, a Norwegian bioinformatics company that develops machine learning software to fight cancer.

This week, Oslo Cancer Cluster member OncoImmunity AS was bought by the Japanese IT and network company NEC Corporation. The company is now a subsidiary of NEC and operates under the name of NEC OncoImmunity AS. NEC has recently launched an artificial intelligence driven drug discovery business and stated in a press release that NEC OncoImmunity AS will be integral in developing NEC’s immunotherapy pipeline.

 

AI meets precision medicine

One of the great challenges when treating cancer today is to identify the right treatment for the right patient. Each cancer tumour is unique, and every patient has their own biological markers. So, how can doctors predict which therapy will work on which patient?

NEC OncoImmunity AS develops software to identify neoantigen targets for truly personalized cancer vaccines, cell therapies and optimal patient selection for cancer immunotherapy clinical trials. Neoantigen targets are parts of a protein that are unique to a patient’s specific tumor, and can be presented by the tumor to trigger the patient’s immune system to attack and potentially eradicate the tumor.

“The exciting field of personalized medicine is moving fast and becoming increasingly competitive. The synergy with NEC Corporation will allow us to make our technology even more accurate and competitive, as we can leverage NEC’s expertise in AI and software development and enable OI to deploy our technology on scale in the clinic due to their expertise in networks and cyber security,” said Dr. Trevor Clancy, Chief Scientific Officer and Co-founder.

“This acquisition gives us the opportunity to be a world leading player in this field and serve our Norwegian and international clients with improved and secure prediction technology in the medium to long term,” said Dr. Richard Stratford, Chief Executive Officer and Co-founder.

 

The rise to success

OncoImmunity was founded in 2014 and has been a member of Oslo Cancer Cluster since the early days of the start up. The co-founders Dr. Trevor Clancy and Dr. Richard Stratford said the cluster has been instrumental to their success and thanks the team for their advice and support from the very beginning of their journey:

“It is crucial with a technology like ours that we interact with commercial companies active in drug development, research, clinical projects, investors and other partners. Oslo Cancer Cluster is the perfect ecosystem in that regard as it provides the company with the networking and partnering opportunities that in effect support our science, technological and commercial developments.”

Mr. Anders Tuv, Investment Director of Radforsk, has been responsible for managing the sales process in relation to the Japanese group NEC Corporation on behalf of the shareholders. The shareholders are happy with the transaction and the value creation that was realised through it. Mr. Tuv commented:

“It is a huge recognition that such a global player as NEC sees the value of the product and expertise that have been developed in OncoImmunity AS and buys the company to strengthen their own investments in and development of AI-driven cancer treatment. It is also a recognition of what Norway is achieving in the field of cancer research, and it shows that Radforsk has what it takes to develop early-phase companies into significant global positions within the digital/AI-driven part of the industry. We believe that NEC will be a good owner going forward, and we wish the enterprise the very best in its future development.”

 

Medicine is becoming digital

NEC OncoImmunity AS is now positioned to become a front runner in the design of personalized immunotherapy driven by artificial intelligence. Dr. Trevor Clancy said that NEC and OncoImmunity share the common vision that medicine is becoming increasingly digital and that AI will play a key role in shaping future drug development:

“Both organizations believe strongly that personalized cancer immunotherapy will bring curative power to cancer patients, and this commitment from NEC is highlighted by the recent launch of their drug discovery business. The acquisition now means that both companies can execute on their vision and be a powerful force internationally to deliver true personalized medicine driven by AI.”

 

For more information, please visit the official websites of NEC Corporations and NEC OncoImmunity AS 

 

Sign up to OCC newsletter

Cathrine Wahlström Tellefsen gave a talk to teachers on how programming can be used to teach science subjects in upper secondary schools.

Introducing programming to the curriculum

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter