The e-health meeting place

Starting next year, Oslo Cancer Cluster will co-power the conference E-health in Norway (EHiN).

– This is a natural continuation of the work we do in digitalisation, for a better understanding of cancer and better patient treatment, said Ketil Widerberg, General Manager of Oslo Cancer Cluster, at this year’s conference.

The Norwegian Ministry of Health and Care Services (HOD) and ICT Norway started a collaboration on creating a national meeting place for e-health. ICT Norway launched the first EHiN conference five years ago. Oslo Cancer Cluster is happy to announce that we are now one of the three stakeholders in this yearly conference, together with ICT Norway and Macsimum.

EHiN attracts a large audience from Norwegian government and business. The speaker in this picture is Christine Bergland, Director at the Norwegian Directorate of eHealth (NDE).

Norwegian e-health  
EHiN 2018 took place in Oslo Spektrum and was the biggest meeting place for actors in the public and private sector working with e-health in Norway. The conference had 150 speakers and 1300 participants. EHiN 2019 will be the 6th year of the conference.

What happened at EHiN 2018?

 — EHiN is an important meeting place for public and private actors, and for academia and business. This is a natural prolongation of the many meeting places Oslo Cancer Cluster is always working to establish and preserve, Ketil Widerberg says.

Digital technologies are part of what drives innovation to the maximum benefit of cancer patients. Widerberg is certain that e-health will change the way we understand and treat cancer in the future.

– E-health is part of the matrix for how we give the right medicine to the right patient at the right time, meaning precision medicine. One example of what we specifically do in this area, is a recent project we have been part of, called PERMIDES.

An e-health success story
From August 2016 until August 2018, Oslo Cancer Cluster together with five other European clusters in medicine and ICT, was managing a Horizon 2020 EU project called PERMIDES. It is a European e-health success story in bringing together biopharma and IT sectors.

D.B.R.K Gupta Udatha at the EHiN conference in 2018. Dr. Udatha was the project manager for PERMIDES at Oslo Cancer Cluster.

D.B.R.K Gupta Udatha is Director (Digital and EU) at Oslo Cancer Cluster. He has been instrumental in PERMIDES and explains why the project has had such a positive effect on the small and medium sized enterprises (SMEs) it has worked with. 

PERMIDES was a project to anchorage digital transformation across SMEs in biotechnology and pharmaceuticals. We aimed to see where the biopharma companies were lacking digital infrastructure and where the ICT companies could bring digital skills to make sure that the biopharma companies were up to date, Dr. Udatha said at this year’s EHiN.

The project created matchmaking opportunities between these two different categories of companies and was awarded EUR 4.8 million from the EU’s Horizon2020 programme. It addressed specific challenges for SMEs to go digital with a precision medicine product.

Read more bout the PERMIDES project here.

Let us cooperate on precise health technologies

International cooperation is key to fulfilling our vision of making cancer treatments more precise, and giving the patients new treatments more quickly.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018. 

The countries in Northern Europe have contributed to developing medical treatments that we today could not imagine living without. From the British discovery of antibiotics to the Danish development of a treatment for diabetes. Once again it is time for Northern European health innovation, this time in the field of health technology. What might the prime ministers from Northern Europe focus on when they meet in Oslo on 30 October to discuss health technology?

They might want to point out concrete and state-of-the-art initiatives from their respective countries. It could be Swedish biobanks, Finnish artificial intelligence, Danish health data, English genomics and Estonian health blockchain. These are exciting initiatives that make medicine more precise. This is particularly important when it comes to cancer because more precise treatments could save lives and limit the late effects resulting from imprecise treatment.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018.

At the same time, we see the contours of serious challenges arising with more precise medicine, such as each unit becoming more expensive. Smaller patient groups also mean that it is harder to find enough patients to understand the biological processes and the consequences of new medical treatments. As the prime ministers gather in Oslo to discuss health technology and plan the road ahead, it would not be amiss for them to look back in time and find inspiration from another technological development.

Precise through cooperation
In the 1990s, the search engine Yahoo helped us to quality-assure by categorising and being precise when we needed information on the internet. Yahoo thus contributed to the internet changing the world. However, the amount of data soon became enormous and complex, and a never-ending need for resources and experts arose. The traditional categorisation to ensure quality and structure the data became an impossible task.

This is very similar to what is happening in the health field today. We are constantly collecting more data and educating an increasing number of experts. With a few exceptions, every country is now collecting their data in their own registers and using a great deal of resources on assuring the quality of the data. The countries are rightfully proud of their initiatives. In Norway, we are proud of our biobanks and our health registers, such as the Cancer Registry of Norway. At the same time, we need to ask ourselves whether this national strategy really is the smartest way forward.

Let us go back to Yahoo. Towards the end of the 1990s, some engineers in California thought differently about the internet. How about using cooperation as a quality indicator? Instead of categorising, the links between the websites could ensure data quality. This is how Google was born, and we got precision, quality and insight into data that changed the world.

There are different challenges in the health field than on the internet. Data are more sensitive and the consequences for individuals can often be more dire. At the same time, health technology, in many ways, has reached the same point as the internet faced in the 1990s.  We do not have the quantity, the methods for analysis, or the quality to fully exploit the data to gather insight, or for treatment or innovation – yet.

From Yahoo to Google level
One way in which we could tackle the health technology challenges the data present us with is through international cooperation. It is about two things: to gather enough data, and to analyse the data to provide better and more precise treatment. The initiatives so far are promising, but they lack the potential to make the leap from Yahoo to Google.

The Northern European prime ministers can probably acknowledge this. The question is: what can they do? Should they encourage smart young engineers to analyse health data instead of developing the next app? Or should they change the way the hospitals buy technology?

A step in the right direction could be to look at what works best in the other countries. At the same time, we need to avoid new initiatives merely becoming a better horse-drawn carriage. Are there initiatives in existence that are scalable internationally so that we can bring health data up to the next level together? The answer is yes, but it requires visionary initiatives that have not been done anywhere else.

Common clinical studies
An area that the prime ministers will be able to highlight is a Northern European initiative for clinical studies. Together, the countries have a large number of patients, which gives researchers and doctors a better basis in their studies to understand more and provide better treatment. Such an initiative could also use health data from the national health services collected on a daily basis in several countries, known as real world data, instead of eventual clinical studies with patients over several years. This would be both quicker and much cheaper.

The prime ministers might also agree on cooperating on Northern European genetics. For 13 years, we collaborated on mapping our genes in the international  Human Genome Project. Now we need to get together to understand genes and treat the patients. With prioritised funding, genetics will soon be a part of the everyday clinical life in England. We can learn a lot from their experience.

Artificial intelligence
Lastly, the Northern European prime ministers may wish to collaborate on artificial intelligence in the health field. Today, cancer treatment, for instance, often only works on three out of ten patients. Artificial intelligence will change how we understand diseases such as cancer and how we treat the patients. The experiences from Finland of introducing artificial intelligence will help other countries to understand where the barriers are and where help might be needed first.

Oslo Cancer Cluster’s vision is to make cancer treatment more precise and provide new treatments more quickly to the patients. We see that international cooperation is key to obtaining this goal. As a result, we could also discover diseases more quickly and reduce the costs of the national health services. We hope the Northern European prime ministers will delve into these issues when they meet to discuss the health technologies of the future here with us.

By Ketil Widerberg, General Manager at Oslo Cancer Cluster.

American tech and Norwegian health data

Combining country scale population data with world class computer systems and algorithms will push the boundaries of precision medicine.

This is a story about the unique American-Norwegian collaboration that combines the best health data with the most powerful computers in a pioneer project run by Cancer Registry of Norway and Lawrence Livermore National Laboratory.

Data to screen cancer 
The ongoing project was initiated after a talk on tech between the General Manager of Oslo Cancer Cluster and a Senior Scientist from Lawrence Livermore National Laboratory. Some months later, in San Francisco, a meeting room was filled with some of the world’s best minds on cancer and technology. The Norwegians knew cancer and the Americans knew computing. The outcome was unknown. 

They identified a concrete challenge. Can we see patterns in data to screen cancer more precisely?

The quest resulted in a successful cooperation between Lawrence Livermore and the Cancer Registry in January 2016 where a team from the Cancer Registry started the first project on cervical cancer. If successful, they would potentially identify and screen high risk patients earlier and leave the low risk patients unburdened. 

Now there are two ongoing projects, one on cervical cancer and one on multitask learning for cancer. The goal is to make predictions more accurate and improve precision medicine. 

– If successful we can potentially identify and screen high risk earlier and leave the low risk unburdened. The individual and social impact of such a strategy is significant. This may be the reason why Joe Biden mentioned details from this project at a UN Assembly last year, Widerberg said.

Former Vice President Joe Biden led the American cancer initiative known as the Cancer Moonshot Blue Ribbon Panel. Two years ago, when the collaborative project between Norway and the USA had just started, the Blue Ribbon Panel released a report describing ten transformative research recommendations for achieving the Cancer Moonshot’s ambitious goal of making a decade’s worth of progress in cancer prevention, diagnosis, and treatment in just 5 years.

One of the ten recommendations was to expand use of proven cancer prevention and early detection strategies.

The major research questions
– One of the major research questions right now is How do we design the optimal screening programs? Another is how to actually take advantage of the registry data that we have, said Giske Ursin, Director of the Cancer Registry of Norway.

In Norway, and similarly in the other Nordic countries, we have registries on various diseases, pregnancy/births, vaccinations, work history/unemployment, income and much more. We have data sets dating from the 1950s. That is unique in the world. 

– If you look at enough data, you can find interesting links that can be explored in the clinical world or elsewhere. For instance; how do other diseases affect cancer diseases? We need international expertise to cover areas we are not experts on ourselves, she said, showing a picture of one of the super computers at Lawrence Livermore.

Cancer and national security
Lawrence Livermore National Laboratory is a national security laboratory and part of the U.S Department of Energy. The laboratory has over 5000 employees, of which at least half are engineers and researchers.

– We have the mandate from the government to push the forefront on subjects like bio security. Precision medicine is alined with the bio security mission, but it is even more relevant to the super computing research mandate. What are the next types of problems that will move this forward? Biomedical data complexity. That is why we are in this, Ana Paula de Oliveira Sales from Lawrence Livermore National Laboratory said in her presentation. 

Some ingredients of the project on cervical cancer is to improve cancer outcome prediction by combining disparate cancer types. The preliminary results are encouraging.

You can read more about the research projects of Cancer Registry of Norway on their website.

Break down barriers
John-Arne Røttingen, CEO of the Research Council of Norway, gave a talk on how collaborations between the Nordic countries and other countries are important for population based clinical research and health research.

– Personalized medicine is full of promise and we want to contribute to this progress, but we cannot do this only with our data. We have to collaborate with other countries and with different fields of research, he said.

One important country in that respect is of course the USA.

Kenneth J. Braithwaite, U.S Ambassador to Norway, talked about the opportunities with the Norwegian databases in a meeting in the Oslo Cancer Cluster innovation park 20 September 2018.

— I have learned the past few years that data is king, and we need to wrap our arms around this. I think there is a responsibility from the governments to begin to break down the barriers and truly find a cure to cancer. That’s what we are up against, said U.S. Ambassador to Norway Kenneth J. Braithwaite, who is Rear Admiral of United States Navy (Retired).

— As we say in the Navy, full speed ahead!

Funding Innovation in BioPharma and IT

What kind of work does it take to receive PERMIDES funding for innovative concepts and projects? Meet one of the companies that just received funding. 

 

22 collaboration projects will receive a total of 1,25 Million Euros from PERMIDES for innovation projects between small and medium sized enterprises (SMEs) from biopharma, bioinformatics and the IT sector. 

One of the lucky companies to receive innovation funding is Oslo Cancer Cluster member Myhere. For MyHere, it was especially important that the PERMIDES initiative is focused on the intersection between BioPharma and IT.

– Working with partners that are specialized in our field makes it easier to communicate the mission we are on, the concrete problems we are trying to solve and to qualify if we are a good match for each other or not. Furthermore, as we learned about the people and companies involved with PERMIDES, we discovered that we could learn a lot from the experiences of other SMEs in the program, says Jon-Bendik Thue, CEO at MyHere.

An innovative health app
MyHere’s mission is mainly carried out through the use of their app. This app, which pinpoints levels of Prostate Specific Antigen (PSA) in the bloodstream, enables a clearer outlook on potential prostate cancer and when to promptly, and timely, seek help. Thus, this app creates a balanced overview of prostate cancer that can save the patient and doctor from underdoing and overdoing the process. Essentially, the app is designed to save lives.

In this video, from MyHere’s webpage, the company explains the concept:

Essential health data
The funding will enable MyHere to start with a project that manages content from owners of health data. Health data is a tremendous resource, but unfortunately also tremendously underutilized. One important factor is the issue with getting consent from the owner of health data for research purposes. Typically, the owner is the individual the information was generated from, often in the role as a patient.

– As a provider of medical services directly to consumers, while at the same time organizing data across patient journeys, we are in a unique position to help solve the issue with consent for use of data. The funding from PERMIDES will allow us to build a dynamic data owner content management system, that will be integrated into our medical service platform. We are very excited about this project and we look forward to implementing it with our partner FramX, says Thue.

– Without this funding, we would have had to postpone the initiative without knowing when we would be able to realize it. Now we are thrilled that we will be able to hit the ground running right after the short Norwegian summer, he adds.

More winners in this round
Another Oslo Cancer Cluster member that got funding in this PERMIDES call is Arctic Pharma, a small start-up company committed to developing innovative anti-cancer drugs by exploiting the peculiar metabolic features of cancer cells.

These two Oslo Cancer Cluster members were among six Norwegian companies involved in four successful applications for Innovation Voucher funding. All of them will be able to initiate their joint projects in August and expect to see results early next year.