Computers with different software and programming language is necessary to learn about machine learning and artificial intelligence. PhD student Øyvind Sigmundsson Skøyen explains to Jakob, August, Magnus and Jørgen how to program the game Snake so that the snake always survives.

Programming to understand artificial intelligence

Students learning Artificial Intelligence, Machine Learning and Neural Networks

This article was originally published in Norwegian on our School Collaboration website.

How can programming, artificial intelligence and machine learning help us understand the human brain?

Four students from Ullern Upper Secondary School spent two days in the beginning of March on a placement in the Department of Physics at the University of Oslo. Jakob, August, Jørgen and Magnus learned how to program the snake in the game Snake to survive. At the same time, they learned about artificial intelligence, neural networks and machine learning.

Every spring, Professors Anders Malthe-Sørenssen and Marianne Fyhn at the University of Oslo receive eight students from Ullern Upper Secondary School on a placement.

Marianne Fyhn’s research group consists of some of the leading neuroscientists in the world. The four biology students Chiara, Eline, Tora and Eilin from Ullern Upper Secondary School spent the placement training rats and learned how research on rats can provide valuable knowledge about the human brain.

Anders Malthe-Sørenssen is the Director of CCSE (the Center for Computing in Science Education), where the students Magnus Trandokken, August Natvik, Jørgen Hamsund and Jakob Weidel were on another placement.

“There are three PhD students here, who are teaching the Ullern students. At the end of the day, they will gain a better understanding of what artificial intelligence is. We wish to explain the concept to them and give them an insight into what machine learning, neural networks and programming are,” said Malthe-Sørenssen.

  • Scroll to the bottom of this page to read the definitions for machine learning, neural networks and artificial intelligence.

Malthe-Sørenssen and the PhD students tested a new teaching tool on the Ullern students. If it is successful, more students will be able to access it to learn about artificial intelligence. Malthe-Sørenssen and his research group also try to improve the teaching of advanced mathematics, physics and programming in upper secondary schools.

Students learning artificial intelligence, machine learning and neural networks

Øyvind Sigmundsson Skøyen (in the middle) was one of the PhD students that taught the students from Ullern Upper Secondary School. Here, he is helping Jakob Weidel, who is in his first year. To the right is August Natvik, who is graduating this year. Photo: Elisabeth Kirkeng Andersen

Making the snake immortal

Jakob, Magnus, August and Jørgen programmed the game Snake in the programming language Python. This is a programming language that is available for free, an “open source”. You can download it here.

The point of the game Snake is to keep a snake alive for as long as possible. It lives in a square, where it eats candy so that its tail grows. The purpose of the game is to make sure the snake doesn’t crash into itself while it is growing because if it crashes, the snake dies. But it is not that easy. Try it yourself here.

“The students will program the snake so that it can learn where it is smart to move to eat the candy, while at the same time avoiding to crash into its growing tail. It is a good way to understand a little artificial intelligence and machine learning,” said Malthe-Sørenssen.

The three PhD students Sebastian Winther-Larsen, Øyvind Sigmundsson Skøyen and Even Marius Nordhagen were there to teach the Ullern students.

Øyvind had just finished showing the students how to programme the snake when it was Even’s turn to teach.

“What du you already know about machine learning?” Even asked.

“I have seen a little bit on YouTube,” Jakob replied.

“I know the theory, but I haven’t tried it myself,” Magnus said.

Even explained that he would present the theories behind machine learning and neural networks first, and then let the students create a neural network for Snake.

“Linear regression – a theory we often use in mathematics – is a simple form of machine learning. It is about producing a function that gives us the best line between two points. We use something called the method of least squares,” Even said.

Ullern students learning artificial intelligence, machine learning and neural networks.

Espen Marius Nordhagen (to the right) explains to the students from Ullern that regression is a simple form of machine learning. August Natvik is following closely. Photo: Elisabeth Kirkeng Andersen

Even explained that machine learning is used in image analysis. A computer can be taught to recognise and see the difference between several objects in a picture. The objects can be cars, bikes, humans, or other things. The computer can then be taught to create the images, which are then called generative models. Voice recognition, such as the virtual assistant Siri for iPhone users, is also based on machine learning, just like self-driving cars and buses.

“In order to understand artificial intelligence, you have to know what a neural network is. The concept is inspired by biology, neuroscience, and how human beings learn and remember. A neural network is a simplification of the human brain. The brain is in reality much more complicated,” Even explained.

“What is actually the difference between machine learning and artificial intelligence?” Jørgen asked.

Even explained that regression is machine learning, but not artificial intelligence.

“If you have a neural network with several layers, a so-called ‘deep neural network’, it is artificial intelligence. Then you will observe that something is happening with the data you receive from the neural network, it will be something you do not understand and cannot model, but it is consistent with reality,” Even said.

Learned new subjects

Magnus, August and Jørgen are all in the third year and have specialised in the natural sciences, with different combinations of mathematics, physics, technology, research, programming and computer modelling.

After graduating, all three of them will go to military school. Afterwards, Jørgen and Magnus are tempted to study at NTNU.

“The Industrial Economics programme at NTNU seems really good. Maybe I will combine it with the Entrepreneurship Programme, which is also at NTNU. Then I can start my own company after I finished studying. I am also thinking about a career in the military,” said Magnus.

The Ullern students agreed that the placement at the Department of Physics had been difficult, but fun and educational too.

“They are really good at teaching here. It has been difficult, because we haven’t studied these subjects before and everything new is always difficult,” said Jørgen.

Jakob Weidel is still in his first year and is thinking about studying the same subjects as the other three Ullern students. He was asked to participate in the placement after he helped Tom Werner Halvårsrød, the IT administrator at Ullern Upper Secondary School, to programme Excel sheets, which are used in the school.

“I have made a few apps and developed a few websites and used different types of programming languages. I have never used Python before, so it has been fun to learn something new,” said Jakob.

(image caption) Anders Malthe-Sørenssen is a professor at CCSE (the Centre for Computing in Science Education) at the University of Oslo. He and his research group are active in many different areas of research, including improving how physics is taught and understanding how the brain works through advanced mathematical models. Photo: Elisabeth Kirkeng Andersen.

Anders Malthe-Sørenssen is a professor at CCSE (the Centre for Computing in Science Education) at the University of Oslo. He and his research group are active in many different areas of research, including improving how physics is taught and understanding how the brain works through advanced mathematical models. Photo: Elisabeth Kirkeng Andersen

Neural networks and neuroscience

Malthe-Sørenssen’s and Fyhn’s research groups collaborate in a field of biology and physics, which is about research into how the human brain works and neural networks, in the projects DigiBrain and CINPLA. CINPLA is an acronym for Centre for Integrative Neuroplasticity.

“Here at the Department of Physics, we create computer models of neural networks. Then, we compare our models with Marianne’s discoveries about how the brain works from her studies on rats and mice. So far, we have seen that our models give a good picture of what is actually happening in the brain, but we are far from finished,” says Malthe-Sørenssen.

His popular research group receives over 1 000 job applications every year, but they want to keep prioritising student placements.

“We are dedicated to contributing to improving the programming skills in schools. One of our employees has developed the new subject and the syllabus for programming and computer modelling, which will be implemented in upper secondary schools by autumn 2020. Programming will then be used to teach several subjects, including mathematics,” Malthe-Sørenssen says.

He thinks it is good to contribute to raising the level of skills in the local schools around the Department of Physics at the University of Oslo.

What is a placement?

Oslo Cancer Cluster and Ullern Upper Secondary School have an active school collaboration project. The collaboration gives students at the school the opportunity to take part in work placements at different companies and research groups at Oslo University Hospital, at the University of Oslo and with members of Oslo Cancer Cluster.

On the placements, the students get to learn about different subject areas directly from experts and they get the opportunity to do practical laboratory work. The purpose of the placements is to give the students an insight into the practical everyday life of different professions and what career opportunities that different academic degrees hold.

DEFINITIONS

Neural Networks: A neural network is a group term for data structures, and their algorithms, that has been inspired by the way nerve cells in the brain are organised. Neural networks are among the key concepts in machine learning and artificial intelligence.

Machine learning: Machine learning is a special area within artificial intelligence, where you use statistical models to help computers to find patterns in large data quantities. The machine “learns” instead of being programmed.

Artificial intelligence: Artificial intelligence is information technology that adapts its own activity and therefore seems intelligent. A computer that is able to solve assignments without instructions from a human on how to do it, has artificial intelligence.

Sign up to our monthly newsletter

 

New member: Glaxo Smith Kline

Image of Oslo Cancer Cluster Innovation Park

In this article series, we will introduce the new members of our oncology cluster.

Find out how Glaxo Smith Kline (GSK), the latest global pharmaceutical company to enter into our ecosystem, is contributing to the oncology field.

Glaxo Smith Kline is one of the largest research-based pharmaceutical companies in the world, with over 80 employees located in Norway. The company was founded in 2001, but its history can be traced all the way back to the 1700s. Today, they have an impressive portfolio of vaccines, as well as many promising immunotherapy treatments underway.

We asked a couple of questions to Halvard Grønlien, country medical director of GSK Norway, to find out more about their plans in the oncology area.

Tell us about GSK and how the company is involved in the cancer field.

“GSK is a science-led global healthcare company with more than 100 000 employees in over 150 countries and around 80 people in GSK Norway. Our goal is to be one of the world’s most innovative, best performing and trusted healthcare companies. Our pharmaceutical and vaccines businesses have a broad portfolio of innovative and established vaccines and medicines with commercial leadership in respiratory and HIV. Our vaccines business has a portfolio of more than 30 vaccines, helping to protect people against 21 diseases. We are the biggest supplier of vaccines to the Norwegian immunization program. Our R&D approach focuses on science related to the immune system, use of genetics and advanced technologies, and our strategy is to bring differentiated, high-quality and needed healthcare products to as many people as possible.

“Within oncology, we are committed to maximizing patient survival through the development of transformational medicines. Since 2018, we have more than doubled the number of oncology assets in clinical development through our own science, the acquisition of TESARO and other alliances. We aim to deliver a sustainable flow of new treatments based on a diversified portfolio of investigational medicines utilizing modalities such as small molecules, antibodies, antibody drug conjugates and cells, either alone or in combination. Our innovative portfolio focuses on four cutting edge areas of science that we believe offer the greatest opportunities to provide meaningful solutions for patients:

  • Immuno-oncology: using the human immune system to treat cancer
  • Cell therapy: engineering human T-cells to target cancer
  • Cancer epigenetics: modulating the gene-regulatory system of the epigenome to exert anti-cancer effects
  • Synthetic lethality: targeting two mechanisms at the same time which together, but not alone, have substantial effects against cancer”

Why did GSK join Oslo Cancer Cluster?

“GSK has an increasing pipeline of new oncology assets and in the process of establishing a network within oncology. Oslo Cancer Cluster is an important part of the oncology landscape in Norway and indeed an important partner for GSK. We are looking forward to partnering with Oslo Cancer Cluster when arranging scientific meetings and dialogues, bringing investigators together for fruitful clinical research collaborations, and bridging GSK global discovery team with biotech/startup community in Norway looking for new R&D investments.”

gsk logo

Sign up to our monthly newsletter

Our funding support: up to €60 000 per SME

Our EU project DIGI-B-CUBE offers funding support of up to €60 000 per SME, for small to medium-sized enterprises that may be struggling during the corona crisis.

The COVID-19 pandemic represents an unprecedented challenge for healthcare systems and societies worldwide. There is an urgent need for novel diagnostics solutions, integrated detection systems and biosensing technologies that would, in a rapid, specific and efficient way, support the identification and tracking of infection chains and acquired immunity. Biological and biomedical imaging technologies are also essential for addressing many research questions, such as those related to SARS-CoV-2 infections, from basic research at the molecular and cellular level to medical applications and diagnostics. In addition, Biobanking processes are crucial in the race towards a COVID-19 vaccine and development of treatment options.

There is an urgent need to support Small and Medium-sized Enterprises (SMEs) capable of delivering innovation projects addressing the broad range of COVID-19 related challenges.

Through DIGI-B-CUBE project, we are announcing our funding support for SMEs to fight against COVID-19 through cross-sectoral collaborative projects. DIGI-B-CUBE offers direct financial support up to €60,000 per SME from relevant sectors including healthcare, medicine, biotech, biopharma, IT, robotics, automation, electronics, and nanotech. DIGI-B-CUBE supports digital innovations and solutions for the reconfiguration of the Medical Diagnostics and related value chains (depicted in the diagram below) towards a Health Economy 4.0 with a special focus on Biobanking, Bioimaging, Biosensing and related industries.

digibcube graphics

Given below are the details of the DIGI-B-CUBE open call: 

Project Name: Digital Enterprise Innovations for Bioimaging, Biosensing and Biobanking Industries (DIGI-B-CUBE)

Open Call Title DIGI-B-CUBE Open Call for Proposals for Innovation Projects (DIGI-B-CUBE-IA-2020-2021)

Open Call Publication Date: 22 April 2020

Deadlines:

Voucher Type 1st Deadline 2nd Deadline
Prototyping Voucher 29 July 2020 at 17:00 (CET) 03 February 2021 at 17:00 (CET)
Customised Solution Innovation Voucher 29 July 2020 at 17:00 (CET) 03 February 2021 at 17:00 (CET)
Continuous Open Call
Co-working Disruption Lab Voucher From 28 October 2020 to 27 October 2021, 17:00 (CET)

Expected Duration of Participation:

Voucher Type Project Runtime
Prototyping Voucher 1 to 3 months
Customised Solution Innovation Voucher 2 to 6 months
Co-working Disruption Lab Voucher 0.5 to 2 months

Maximum Funding Request per Proposal:

Voucher Type Max. funding per SME Max. funding per project
Prototyping Voucher €20 000 €60 000
Customised Solution Innovation Voucher €50 000 €150 000
Co-working Disruption Lab Voucher €10 000 €10 000

Purpose of the Vouchers and Respective Applicant Group:

Voucher Type Purpose Applicant Group
Prototyping Voucher Support to prototype or conceptualise a solution (proof of concept, feasibility study) for a digitalization challenge in the Medical Diagnostics and related value chains. Consortium consisting of minimum 2 SMEs and maximum 3 organizations;

From at least 2 different sectors (Example: An SME from healthcare/medicine/biotech/biopharma + An SME from IT and related sectors)

Customised Solution Innovation Voucher Support to jointly develop a novel product/service based on an existing proven concept that addresses a digitalization challenge in the Medical Diagnostics and related value chains. Consortium consisting of minimum 2 SMEs;

From at least 2 different sectors (Example: An SME from healthcare/medicine/biotech/biopharma + An SME from IT and related sectors)

Co-working Disruption Lab Voucher Support to further advance a successfully completed customised solution innovation voucher project in an incubator / accelerator / co-working space of the DIGI-B-CUBE clusters’ network (or) in labs, technical and innovation facilities of other relevant SMEs. One SME from a completed Customized Solution Innovation Voucher project consortium + a host organisation (host does not receive direct funding from this voucher)

Evaluation Process:

The evaluation process takes max. 4 weeks starting from the respective cut-off date/deadline. The applicant/s will receive an e-mail about the outcome of the assessment directly after the assessment is finalised.

Target Group:

SMEs from the following sectors are eligible to apply for DIGI-B-CUBE vouchers:

  • healthcare / medicine / biotech / biopharma
  • IT and related sectors (robotics, automation, electronics, nanotech etc)

Submission Language: English

Web address for full open call informationhttps://digibcube.eu/open-calls/

Web address for proposal submissionshttps://digibcube.eu/collaborative-platform/

E-mailinfo@digibcube.eu

Indicative budget for the call: Total budget €2 700 000. The following budget planned across the deadlines may change based on the number and quality of the applications received.

Voucher Type 1st Deadline 2nd Deadline
Prototyping Voucher approx. €360 000 approx. €240 000
Customised Solution Innovation Voucher approx. €1 050 000 approx. €700 000
Continuous Open Call
Co-working Disruption Lab Voucher approx. €150 000

Contact (Coordinator):

Dr. Gupta Udatha

Director (Digital & EU)

Oslo Cancer Cluster

Oslo, Norway

Email: gupta.udatha@oslocancercluster.no

Funding opportunities for health and IT SMEs

Digi-b-cube logo

DIGI-B-CUBE, funded under the European Union´s Horizon 2020 Programme, aims to unlock the cross-sectoral collaborative potential of SMEs by combining e.g. Artificial Intelligence (AI), Cognitive Computing Digital Technologies (CCDT) with the Bioimaging-Biosensing-Biobanking (B-CUBE) and related value chains to deliver market sensitive disruptive technologies and generating innovative solutions that enhance patient-centred diagnostic work-flows.

The project provides support to SMEs through matchmaking, coaching, digital transformation services and equity-free funds up to €60,000 per SME. The support helps SMEs design solutions and develop new products and services to accelerate innovations in personalised medicine. SMEs can access these services and apply for funding under the DIGI-B-CUBE Voucher Scheme by registering on the DIGI-B-CUBE Collaborative Platform at platform.digibcube.eu.

Use the DIGI-B-CUBE Collaborative Platform at platform.digibcube.eu to:

  • Get to know other organisations and identify collaboration partners online or during matchmaking events;
  • Register for DIGI-B-CUBE events;
  • Access services (digital maturity assessment tool, knowledge repository, training, competence network and board programme) to facilitate your digital transformation;
  • Apply for funding through the DIGI-B-CUBE Voucher Scheme;
  • Get follow-up coaching by the cluster organisations regarding further existing support measures and additional funding schemes.

Participate in the DIGI-B-CUBE Events to:

  • Identify value chains and associated challenges for SMEs for their digital innovation and collect data on existing processes and management systems;
  • Evaluate identified value chains and associated challenges for SMEs and develop customised solutions;
  • Take part in matchmaking events and face-to-face meetings to find collaboration partners from the IT and/or Health sector to apply for funding for joint digital innovation projects that address value chain issues;
  • Take part in digital transformation activities and follow-up coaching in order to successfully develop and scale-up digital innovation products and services.

Receive funding through the DIGI-B-CUBE Voucher Scheme

Benefit from four types of vouchers to tackle digitalisation challenges and:

  • Build cross-sectoral and cross-border partnerships composed of businesses that are challenge-owners and solution-providers;
  • Contribute to new Health industries, new digital Health services, effective Medical Diagnostics that will lead to Precision Medicine, Preventive Medicine and Healthcare Transformation.

Travel Voucher

Up to €2,000 per voucher
Up to €6,000 per SME

Get reimbursed for your travel costs (transportation, accommodation and event fees) incurred for attending DIGI-B-CUBE events. Applications must be submitted prior to the event.

Available from 20th September 2019 to 28th February 2022


Prototyping Voucher

Up to €20,000 per SME
Up to €60,000 per project

Receive funding to prototype or conceptualise a solution for a digitalisation challenge in the Medical Diagnostics and related value chains. Consortia consisting of minimum two SMEs and maximum three organisations from at least two different sectors will be funded.

1st Deadline: 29th July 2020
2nd Deadline: 3rd February 2021


Customised Solution Innovation Voucher

Up to €50,000 per SME
Up to €150,000 per project

Receive funding to jointly develop a novel product/service based on an existing proven concept that addresses a digitalisation challenge in the Medical Diagnostics and related value chains. Consortia consisting of minimum two SMEs from at least two different sectors will be funded.

1st Deadline: 29th July 2020
2nd Deadline: 3rd February 2021


Co-working Disruption Lab Voucher

Up to €10,000 per SME/project

Receive additional funding to further advance a successfully completed Customised Solution Innovation Voucher project in an incubator / accelerator / co-working space of the DIGI-B-CUBE clusters’ network (or) in labs, technical and innovation facilities of other relevant SMEs. Consortia can include one SME from a completed project consortium and a host organisation.

Available from 28th October 2020 to 27th October 2021

Note: An SME can apply for multiple vouchers but the overall maximum funding per SME is €60,000.


Who can apply?

SMEs that are interested in cross-sectoral collaborations, aiming to integrate innovations from IT into the B-CUBE industries and related value chains, to accelerate the goals of personalised medicine. SMEs should be established in one of the EU member states or H2020 associated countries.

Register on the DIGI-B-CUBE Collaborative Platform at: platform.digibcube.eu

 

 

EU disclaimer