State budget: 61,3 million to personalized medicine

statsbudsjett 2021

Funds for personalized medicine, clinical trials, mature clusters, and digitalisation – these are some of the main points for cancer innovation in the newly released state budget.

In this week’s state budget, the Norwegian government increases the funding for personalized medicine with NOK 30 million to a total of NOK 61,3 million.

NOK 25 million will be used to establish precision diagnostics with advanced molecular profiling in the hospitals, which will give cancer patients a more precise diagnosis. This is also an important requirement for cancer patients to participate in clinical trials.

“The infrastructure for precision diagnostics will improve Norway’s ability to attract clinical studies internationally, it will give more cancer patients the opportunity to participate in clinical trials and it will provide valuable data for further research,” said Ketil Widerberg, general manager of Oslo Cancer Cluster.

The remaining funds for personalized medicine will be used to build competences and begin to establish a national genome centre.

More funding for clinical trials

The Norwegian government announces NOK 75 million to health innovation and clinical studies. The establishment of NorTrials, which will be a partnership between industry and hospitals on clinical studies, will receive NOK 30 million. NorTrials will offer a one-stop-shop for small- and medium-sized enterprises in the health industry and for public institutions that want to conduct clinical trials in Norway.

“Oslo Cancer Cluster has long worked for the establishment of a partnership model for clinical studies between industry and public actors. It is great to see this important aspect addressed in the state budget,” said Widerberg.

More information about NorTrials and the infrastructure for precision diagnostics will be announced in the Action Plan for Clinical Studies, to be presented in December 2020.

As a follow-up to The White Paper on the Health Industry, the Norwegian government also proposes to establish a scheme to improve collaboration between industry and public institutions on health innovation, called Pilot Helse (Pilot Health). This scheme will receive NOK 20 million in funding.

100 million for Norwegian export

A total of NOK 100 million will be used for strategic investments in export opportunities. Most of these funds, NOK 75 million, will go directly to the new unit Business Norway. Another NOK 20 million will strengthen the Norwegian mature clusters through Innovation Norway’s cluster programme. The remaining NOK 5 million will support Norwegian cultural export.

“The mature clusters can assume a central role in creating export opportunities for Norwegian industry abroad. The aim for Oslo Cancer Cluster is to put Norwegian health industry on the agenda internationally, and develop a leading European cancer innovation centre,” said Widerberg.

Greenlight for Horizon Europe

In 2021, an impressive NOK 40,9 billion will be used for research and development, which is 1,1 per cent of Norway’s total BNP.

The government also announced that Norway will participate in the EU programme Horizon Europe. The programme will replace Horizon 2020 and covers the period 2021-2027. It has a total budget of 75,9 billion euro over the entire period.

“It is important for Norwegian industry to participate in Horizon Europe, it brings access to novel knowledge and capital, and encourages cross-disciplinary collaboration, which is essential for cancer innovation,” Widerberg commented.

A new data factory

The budget for digitalisation will be doubled next year: NOK 1,5 billion is set aside. NOK 56,2 million will be used for Norwegian participation in the Digital Europe Programme, which will give Norwegian businesses access to skills and resources in the areas of artificial intelligence, supercomputers, IT security and advanced digital competency.

Another NOK 16 million goes to the creation of a “Data Factory”, which will be set up by The Agency for Digitalisation in cooperation with Digital Norway. The Data Factory will provide services that will help small companies to develop business ideas and create value from data.

At the same time, the newly established Health Analysis Platform, which will make it easier for scientists to conduct research on health data, gains another NOK 35 million.

“There is a massive unleashed potential in Norwegian health data, to create value for both industry and patients. Important hurdles and opportunities are addressed; however, we see the need for even more efforts to understand and treat illnesses like cancer better in the future. With the help of digital tools, we can develop new cancer medicines in 5 instead of 10 years,” Widerberg commented.

Sign up for our monthly newsletter to see the latest news and events

Photo: Vaccibody

Largest biotech agreement ever made in Norway

The team of Vaccibody celebrating their recent successes.

Our member Vaccibody signs multi-million-dollar agreement one week before the company is expected on the stock exchange.

The Norwegian cancer company Vaccibody has entered a worldwide license and collaboration agreement with GenentechRoche, to develop personalized cancer vaccines.

The agreement is worth up to 715 million dollars (approximately NOK 6,7 billion) in near term and milestones, in addition to low double-digit tiered royalties on sales of commercialized products. This makes it the largest agreement ever made in the Norwegian biotechnology sector. It is also the eighth largest biotechnology agreement made in Europe this year.

Michael Engsig, CEO of Vaccibody, said:

“We are very excited to have entered into this transformative agreement that marks the start of a new era for Vaccibody.”

“Genentech is widely recognized as one of the foremost leaders in leveraging the immune system to develop therapies for cancer and is a scientific pioneer within the neoantigen cancer vaccine space. They are therefore the partner of choice for the further development and commercialization of our innovative next-generation cancer vaccine platform for generating individualized therapies.”

This news comes about a week before Vaccibody is expected to be listed on Merkur Market, a part of the Oslo Stock Exchange.

A skyrocketing story

Vaccibody is dedicated to developing and discovering novel cancer treatments in the immunotherapy area. This is a type of treatment that boosts the body’s own immune system to recognise and destroy cancer cells.

The company was founded 13 years ago by Agnete Fredriksen, together with her mentors Professor Bjarne Bogen and his colleague Professor Inger Sandlie – two leading researchers in the Norwegian cancer innovation environment. Fredriksen is now President and Chief Scientific Officer of Vaccibody.

Over the last year, the company’s value has more than doubled several times and the company was valued at NOK 15,3 billion when markets closed on 1 October 2020.

Anders Tuv, Investment Director, Radforsk, and Chairman of the Board, Vaccibody. Photo: Radforsk

Anders Tuv, Investment Director, Radforsk, and Chairman of the Board, Vaccibody. Photo: Radforsk

Anders Tuv, Investment Director of Radforsk and Chairman of the Board of Directors for Vaccibody, has a solid track record of helping biotech companies develop in the oncology sphere. Tuv said:

“The deal with Genentech is a very significant endorsement of Vaccibody and a validation of the Vaccibody vaccine platform. Genentech, as one of the foremost leaders in leveraging the immune system to develop therapies for cancer, is the partner of choice to develop and commercialize individualized cancer vaccines. The deal will enable Vaccibody to accelerate and broaden the Company’s vaccine pipeline which we believe will unlock Vaccibody’s huge potential for patients and shareholders.

“This is a deal that generates substantial interest globally, and will put eyes on Norway as well.”

New strategy and focus

Vaccibody also presented a new strategy with expanded focus into research and development. The company wants to accelerate the development of existing drug candidates and detect new treatment options, based on the company’s technology.

The company’s technology platform will be extended to the discovery of other therapeutic areas and therapeutic methods, besides the present focus on cancer and infectious disease.

Promising cancer therapies

Vaccibody presently has two promising drug candidates. The first is a cancer vaccine against the human papilloma virus (HPV), which is currently being tested in a phase II trial on cervical cancer, in collaboration with Roche.

The second is an innovative personalized cancer vaccine, which has just been licenced to Genentech, and is specially designed for each individual cancer patient, independent of their cancer type.

Sign up to our monthly newsletter

 

Bjørn Klem, general manager of Oslo Cancer Cluster Incubator, and Ketil Widerberg, general manager of Oslo Cancer Cluster, jointly present their vision for the future of cancer innovation. Photo: Oslo Cancer Cluster/Stig Jarnes

The new frontier in cancer innovation

Ketil Widerberg and Bjørn Klem

This column was originally published in the Nordic Life Science magazine (September 2020 Issue).

Oslo Cancer Cluster (OCC) Innovation Park and Incubator plans to expand by 5o ooo m² in the coming years. The goal is to create an international innovation hub in cancer. Why? Because personalized medicine is changing cancer innovation.

The Norwegian Prime Minister Erna Solberg had great expectations when she opened OCC Innovation Park in July 2015, including a 5 000 m² Incubator, situated next to the Oslo University Hospital. The goal was to accelerate the development of new cancer treatments.

With world-class researchers in-house, Jónas Einarsson, CEO of Radforsk, investing in cancer biotechs, and one thousand noisy high school students in the same building, what could go wrong? Possibly everything.

At the time of opening, lab inventory and equipment were missing and only a few lease agreements were signed. More importantly, would scientists, investors and students be viewed as weird outcasts or would an attrac­tive innovation platform be created?

The idea is simple; the OCC Incubator helps entrepreneurs to quality check research ideas, to recruit competent people to board and management roles, and to fund projects. One example is Ultimovacs that started working back-to-back with academics in the OCC Incubator lab to develop cancer vaccines. The company is today listed on the Oslo Stock Exchange with an estimated value of NOK 1.3 billion.

Siva, the governmental infrastruc­ture for innovation, has been essential in making this a success. Their long­term commitment as owner and their support for start-up services has helped start-ups reach the next phase. Kongs­berg Beam Technology, for example, recently attracted NOK 27 million from the Norwegian Research Council and private investors to develop real-time cancer radiation steering systems.

The OCC Incubator was awarded the Siva Innovation Prize in 2017 and is frequently listed among the top 20 innovation hubs in Europe. The start-ups in the OCC Incubator have raised more than NOK 5 bil­lion in equity and treated hundreds of patients since its opening.

The Norwegian Prime Minister’s expectations on both job creation and cancer care are certainly being fulfilled.

So why strive for more? Because precision medicine is changing the world and digital oncology is the new frontier.

From personalized vaccines to cell therapy, medicines are increasingly developed for smaller patient groups. However, government systems for approvals and sharing of data go painfully slow, while global technology companies’ efforts in health fail repeatedly. The recent corona pan­demic has proven the importance of both international collaboration and regional sustainability, from develop­ment of tests to treatments.

It is time to join forces in the Nordics!

Real-world data and artificial intelligence will shorten develop­ment times and reduce costs for new cancer treatments. The OCC Incubator will provide labs and infrastructure next to patients, clinicians and researchers to help achieve this.

Our goal is to reduce the develop­ment of new cancer treatments from 10 to 5 years.

 

Written by: Ketil Widerberg, general manager of Oslo Cancer Cluster, and Bjørn Klem, general manager of Oslo Cancer Cluster Incubator

 

Sign up for our monthly newsletter to see the latest news and events

A peak into our member OncoInvent's laboratories, where the company is developing novel cancer treatments. Photo: OncoInvent

Clinical studies – important for Norwegian companies

OncoInvent

Together with our member Inven2, we wish to highlight the importance of facilitating clinical studies in Norway – in order to build a strong health industry and provide cancer patients with access to new, innovative treatments.

Read the original version of this article in Norwegian on Inven2’s website.

Inven2 handles agreements for clinical studies on behalf of the Cancer Clinic at Oslo University Hospital for most Norwegian companies that develop cancer treatments.

“This is an important contribution to the Norwegian health industry and shows that we are competing internationally,” said Siri Kolle, VP Clinical Trials at Inven2.

OncoInvent is one of the promising Norwegian cancer companies that run clinical studies at the Norwegian Radium Hospital, a part of Oslo University Hospital. They initiated two Phase I studies in May and June this year, on ovarian and colorectal cancer with progression to the abdominal cavity.

The disease progression to the abdominal cavity is what often kills these patients and there is no effective treatment today.

“The product we have in clinical development is called Radspherin®. Radspherin® is a radiopharmaceutical product. It emits alpha rays that effectively kill cancer cells and is gentle for the patient, since the radiation only reaches a couple of cells in diameter,” said Hélen Johansen Blanco.

Blanco is Head of Clinical Operations at OncoInvent and, as such, she is responsible for the company’s clinical studies. She has more than 20 years of experience with clinical studies from both big pharmaceutical companies like AstraZeneca and Celgene, and several biotech companies.

OncoInvent is the third of the four companies that serial entrepreneurs Roy Larsen and Øyvind Bruland have initiated. Algeta was the very first one and was sold to the global biopharmaceutical company Bayer in 2013 for the impressive sum of NOK 18 billion.

Read more about OncoInvent below FACTS at the bottom of this article.

Helen Blanco, OncoInvent

Hélen Blanco, Head of Clinical Operations, OncoInvent. Photo: OncoInvent.

 

Close private-public collaboration

The overview from Inven2 shows eight Norwegian companies that are developing cancer treatments and have clinical studies at Oslo University Hospital at the moment. These are Targovax, PCI Biotech, Nordic Nanovector, Ultimovacs, Vaccibody, OncoInvent, BerGenBio and Exact Therapeutics. These companies are also members of Oslo Cancer Cluster.

What the companies have in common is that they are based on cancer research in Norway, either from academic institutions like a university or hospital, or they have been spun out of private companies.

“Oslo University Hospital has the expertise and feasibility to perform these types of complex early phase studies and is competitive internationally. This is an important prerequisite for Norwegian start-ups to be able to test their treatments in Norway,” said Siri Kolle, VP Clinical Trials at Inven2.

Local trials are a part of building a well-functioning ecosystem for the health industry in Norway.

“This also means that Norwegian cancer patients gain access to new and innovative treatments from Norwegian biotech companies long before the treatments reach the market,” said Kolle.

Kolle thinks that giving Norwegian companies the opportunity to test treatments locally should be a significant part of the Action Plan for Clinical Studies, which will be presented by the Norwegian Ministry of Health and Care Services before the end of the year.

In addition, some of these companies and other Norwegian pre-clinical stage companies, buy services from Oslo University Hospital.

“These services are important for the companies’ research and development, both in pre-clinical and clinical stage. The services include, among other things, pre-clinical studies, production, analysis and reports,” said Kolle.

Siri Kolle, VP Clinical Trials, Inven2

Siri Kolle, VP Clinical Trials at Inven2. Photo: Inven2/Moment Studio.

 

A professional organisation

Jon Amund Kyte is the Head of the Department for Experimental Cancer Treatment at Oslo University Hospital.

“During the course of 20 years, this has developed into a professional department that can perform high-quality clinical studies on behalf of both Norwegian biotech companies and the global pharmaceutical industry. We have quick start-up and good patient recruitment. Moreover, we emphasise patient security, documentation, and data quality. These elements are essential to perform clinical studies,” said Kyte.

The department consists of three units:

  • The Clinical Cancer Research Unit at the Norwegian Radium Hospital, which is specialized in Phase I/II studies.
  • The unit for clinical study nurses, who support the running of the academic departments. In other words, they support the doctors from the different cancer groups who lead the studies, who are also called main investigators or investigators.
  • The “Clinical Trial Office”, which involves a project coordinator that performs all the administrative work for a clinical study, on behalf of the companies that require support and the investigators. This includes applications to the regional ethics committee, all internal agreements with the different hospital departments, agreements with Inven2, applications to the research council (Forskningsutvalget) at the hospital, etc.

“When we receive a request from a company who want to run a study, we contact an investigator in the relevant cancer group, to see if they can do the study. Then, the company goes to our Clinical Trial Office,” said Kyte.

Kyte said that they want to offer the companies a one-stop-shop. The system they have rigged around clinical studies is comprehensive.

“This rig saves both time and money for the company, which doesn’t need to call many different people at the hospital. At the same time, the responsible doctors, the investigators who will lead the study, are relieved from the administrative burden. It is then easier for the doctors to participate,” said Kyte.

Kyte said they are mindful of keeping their promises to the companies. They will rather decline a study if they can’t deliver all the company’s needs or they can’t recruit enough patients.

“We also offer more services to the small companies that are less experienced with clinical studies and that have less resources than the global companies,” said Kyte.

oncologist jon amund kyte

Jon Amund Kyte is the Head of the Department for Experimental Cancer Treatment at Oslo University Hospital. Photo: Sofia Linden

Norway needs to compete

The fact that OncoInvent can perform studies in Norway is important for the company. But it is not a matter of course. The biotech company is “born global” and the studies they run in Norway need to be on the same level, or better, than the clinical studies they run abroad.

“The following aspects are particularly important for us when we choose which locations to place our clinical studies: the quality of the clinical data, the implementation of the study, that the study is started quickly and that the clinical centre can recruit the number of patients they have promised,” said Blanco.

She is very pleased with the two clinical studies that OncoInvent have ongoing at Oslo University Hospital so far and is happy to place more studies there if this positive experience lasts.

“One of the studies we have on colorectal cancer with progression is at the national centre responsible for treating patients with colorectal cancer that has spread to the abdominal cavity. This is a centre with high recruitment of patients from the entire country and that performs the study at a high level. They have included four patients so far and the first dose level is confirmed safe for the patients. No patients have dropped out of the study after signing the consent forms,” says Blanco.

The last part is an important point. Blanco tells us that they thought some patients would drop out of the study after giving their consent. This is because there are very specific inclusion criteria in all clinical studies, but the patient must first give consent before any testing can be done. This shows that the centre, led by gastro surgeon Stein Larsen, knows the patient group very well, Blanco points out.

“In addition, to have a quick start up the contractual work is essential. The negotiation process with Oslo University Hospital has been relatively quick and simple,” said Blanco.

She still points out that there are some structural challenges with running studies in Norway, such as the lengthy application processes at the Norwegian State Medicinal Agency and the Regional Ethics Committee, compared to other countries, such as Singapore and USA. OncoInvent’s experience is that Norway has been the quickest country to start up studies in so far.

“Compared to my experiences from the global studies that I have been responsible for, Norway has traditionally been relatively high in terms of cost and then we expect high quality data, like they deliver in for example Belgium or Germany. However, cost is not always in proportion to quality,” says Blanco.

image of drug radspherin(r) from oncoinvent

Radspherin® is a radiopharmaceutical product. It emits alpha rays that effectively kill cancer cells and is gentle for the patients, since the radiation only reaches a diameter of a couple of cells. Photo: OncoInvent.

Good at quick recruitment

Vaccibody and OncoInvent are proof that the Department for Experimental Cancer Treatments can start studies quickly.

OncoInvent publicised in May and June 2020 that the two phase I studies had begun with their first patient and Vaccibody advertised in July 2020 that its international phase II study of the DNA-based HPV vaccine in combination with a check point inhibitor from Roche also had begun.

In an opinion piece in the Norwegian medical newspaper Dagens Medisin, Kristina Lindemann, Staff Specialist at the Department of Gynaecologic Cancer and Head of Research Group for Gynaecological Oncology, wrote:

“We think it is great that Oslo University Hospital (OUS) was the first site and began with the first patient in this international study for patients with advanced cervical cancer.”

The reason they are quick at recruiting patients is because the Department for Experimental Cancer Treatments runs all applications and approval processes in parallel.

“We have checked and prepared the staff who will perform the study in advance, so that everything is in place when the company begins the study,” said Kyte.

The department gives their employees in-depth training, besides what has already been covered in the course “Good Clinical Practice” and have internal routines to secure good data quality.

When the clinical studies at Oslo University Hospital were stopped because of the corona pandemic in March, they were quickly up and running again because of the good internal routines.

“We never promise more than we can keep. If we can’t deliver a study, we may lose all future studies from that company or in that cancer type, and we don’t want to risk that. Our good reputation is all we have,” said Kyte.

Big potential for studies

Even if many things work well at the Clinical Trials Unit that Kyte heads up, Kyte wishes that clinical studies were a part of a more streamlined system at Norwegian hospitals.

“Clinical studies should be an integrated part of ordinary patient treatment, with dedicated specialists who have time set aside to work with clinical studies. Now, we need to obtain the price and capacity from each department of the hospital for the services we need for the studies. This process is both time-consuming and risky. If one department says no, then we must decline the study and if we are one investigator short, then the study cannot be run,” Kyte explains.

Kyte thinks that the streamlining of the processes should be assigned through documentation from the Ministry of Health and Care Services to the hospitals. This means that when the button “clinical studies” is pushed, it is just as binding for the hospital to complete as any other patient treatment.

“We run about 70 clinical studies at our hospital, this includes both industry studies and academic studies, but we have a much larger potential than this. We are a part of a ‘Comprehensive Cancer Center’ and have access to many cancer patients and competent cancer researchers at the hospital. We are very motivated to drive the interaction between research, business development and patients, that clinical studies represent,” said Kyte.

FACT

OncoInvent

  • OncoInvent was established ten years ago by serial entrepreneurs Roy Larsen and Øyvind Bruland. They are also behind cancer companies Algeta, Nordic Nanovector and newly established Nucligen. Tina Bønsdorff, Head of Research in OncoInvent, and Thóra Jónasdottir, board member in OncoInvent, also helped to establish the company in 2010.
  • Radspherin® is the main product from OncoInvent and is a radiopharmaceutical. This means it is a radioactive pharmaceutical that can kill cancer cells. Radspherin® consists of calcium carbonate particles marked with the radioactive isotope Radium-224, which is an alpha-emitting particle.
  • OncoInvent is in clinical development, with two phase I studies in Norway for the treatment of cancer metastasis in the abdominal cavity, from ovarian and colorectal cancer.
  • The radiation that Radspherin® emits is short and can therefore kill the cancer cells in the abdominal cavity more effectively without harming other parts of the body.
  • OncoInvent has their own production facilities for Radspherin® at their headquarters in Nydalen in Oslo, which is unusual for a small biotech company.
  • The company consists of almost 30 employees as of the end of this year.

Read more at OncoInvent’s official website

 

The Department for Experimental Cancer Treatment and Research Support

  • The main duty of the department is to contribute to more and better patient-focused research by facilitating for and implementing clinical studies.
  • It is led by Jon Amund Kyte.
  • It is a part of the Department for Cancer Treatment at Oslo University Hospital.
  • It consists of about 56 people connected with the department.
  • It runs about 70 clinical studies today, both from industry and academia.
  • It has studies in medical treatments, gene therapy, cancer vaccines, palliative treatments, radiation therapy, surgery and diagnostic procedures.
  • Read more about the work in the department in this interview with Jon Amund Kyte from Pharma Boardroom.

 

Sign up to our monthly newsletter